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Fabricating Microlens Arrays by Surface Wrinkling**

By Edwin P. Chan and Alfred J. Crosby*

The ability to generate microlens arrays in a rapid and cost-
effective manner allows for the fabrication of a variety of in-
expensive functional devices, such as optical refractive ele-
ments or smart surfaces that mimic the patterned surfaces in
biological systems used to control solid[1–3] and liquid adhe-
sion.[4] A variety of strategies have been adopted for fabricat-
ing microlens structures. In general, they can be broadly
classified into three categories: 1) surface-tension-driven tech-
niques consisting of melt-reflow[5–7] and ink-jet printing;[8]

2) imprinting methods;[9,10] and 3) lithographic approaches
such as grayscale photolithography[11,12] or interference lithog-
raphy.[13,14] While these approaches demonstrate the ability to
produce microlens arrays with uniform surface profiles, the
techniques are either high-cost or require long fabrication
times.

In this paper, we introduce an alternative and novel ap-
proach for fabricating microlens arrays that is based on the
confinement of surface wrinkles.[15] We demonstrate the abil-
ity to control the size and the arrangement of the microlenses
through clever control of the geometric shape and material
properties of the wrinkled regions. Our approach offers sever-
al advantages over previous methodologies of microlens fabri-
cation, including: 1) the ability to create microlens arrays rap-
idly; 2) ease of tuning the dimensions of the microlenses; and
3) versatility in the process that allows the formation of mi-
crolens arrays on nonplanar substrates. We demonstrate the
flexibility of our approach in patterning nonplanar surfaces by
patterning a hemispherical surface with an array of micro-
lenses, thereby forming a compound lens (Fig. 1).

To fabricate the microlens arrays, we modified our pre-
viously developed methodology for generating wrinkle-pat-
tern surfaces (Fig. 2a).[15] We began by selective ultraviolet/
ozone (UVO) oxidation of a crosslinked polydimethylsiloxane
(PDMS) film to convert specific regions of the PDMS surface

into a silicate thin film. The chemical modification created the
necessary elastic-moduli differences on the PDMS surface to
allow us to control and define the wrinkle formation. Follow-
ing the silicate formation, the surface was coated with photo-
polymerizable n-butyl acrylate (nBA) and then covered with
a glass superstrate. The acrylate monomer swelled the PDMS
surface globally, but the surface wrinkles occurred only in re-
gions where the moduli mismatch existed—that is, in the oxi-
dized PDMS regions. This selective UVO allowed for the con-
trol of the spatial distribution of the wrinkle patterns (Fig. 2b
and c). The wrinkle patterns disappeared upon evaporation of
the acrylate swelling agent; however, we stabilized these wrin-
kle structures through photopolymerization of the nBA. Fi-
nally, we lifted away the glass superstrate, which caused cohe-
sive fracture of the polymerized poly(n-butyl acrylate)
(PnBA) film. Due to the extreme interfacial moduli mismatch
between the PnBA and silicate layers, the fracture path pro-
ceeded along the contours of the wrinkle surface. Hence, the
microlens arrays were revealed upon removal of the glass
superstrate (Fig. 2b).
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Figure 1. Structure of the compound lens. a) Optical profile of the micro-
lens structures on a polydimethylsiloxane (PDMS) hemisphere. The inset
illustrates the overall dimensions of the compound lens. b) Magnified
optical profile of microlens surface and c) surface profile of a single mi-
crolens measured using a stylus profiler. The dimensions of a microlens
are approximately 5 lm in height and 60 lm in diameter.
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FIG. 2: Notation and experimental system. a,
Schematic of a curved thin film adhering to a soft spheri-
cal substrate of outer radius R. b, The film (thickness h) is
driven towards a wrinkling instability by the compressive film
stress �, leading to wrinkling pattern with wavelength � and
radial displacement u. c, The experimental system consists
of two merged hemispherical caps. An air channel allows to
tune the film stress � via the pressure di↵erence �p = pe�pi.

dard Swift-Hohenberg equation, as originally derived in
the context of Rayleigh-Bénard convection [10, 34]. The
additional (�1,�2)-terms will prove crucial below when
matching theory and experiments.

The detailed derivation (Supplementary Information),
combined with systematic asymptotic analysis of the pla-
nar limit R/h ! 1, allows us to express the coe�-
cients in Eq. (1) in terms of the standard material pa-
rameters: Poisson ratio of the film ⌫, e↵ective curva-
ture  = h/R, Young ratio ⌘ = 3Es/Ef , and excess
stress ⌃e = (�/�c) � 1 (Table I). The theory contains
only a single fitting parameter, c1, related to the cubic
stretching force term cu3. Equation (1) predicts that
the unbuckled solution u = 0 is stable for negative ex-
cess stresses ⌃e < 0, whereas wrinkling occurs for ⌃e � 0.
Linear stability analysis at ⌃e = 0 and  = 0 reproduces
the classical [35] pattern wavelength relation for planar
wrinkling �/h = 2⇡⌘�1/3 (Supplementary Information).

Numerical simulation of Eq. (1) is nontrivial due to the
metric dependence of the biharmonic operator 42 [33].
To compute the stationary wrinkling patterns (Fig. 1a-c)
predicted by Eq. (1), we implemented a C1-continuous
finite-element algorithms specifically designed for covari-
ant fourth-order problems (Methods). A main benefit of
Eq. (1), however, is that it enables analytical prediction
of the various pattern formation regimes.

Pattern selection

Pattern selection in the wrinkling regime ⌃e � 0 is a
nonlinear process and, therefore, cannot be inferred from
linear stability analysis. Numerical parameter scans of
Eq. (1) yield a variety of qualitatively di↵erent station-
ary states that can be classified as representatives of a
hexagonal phase (Fig. 1a), labyrinth phase (Fig. 1c), or
intermediate coexistence phase (Fig. 1b). Qualitatively,
the transition from hexagons to labyrinths can be under-
stood through a symmetry argument: The (b,�1)-terms
in Eq. (1) break the radial reflection invariance of its so-
lutions under the transformation u ! �u. Since b and
�1 are controlled by  = h/R (Table I), we expect a
curvature-induced SB transition at some critical value
of . Furthermore, recalling that the inclusion of similar
SB terms causes a transition from labyrinths to hexago-
nal patterns in the classical SH model [34], it is plausible
to expect a hexagonal phase at large curvatures  and
labyrinths at smaller values of  in our system.
To obtain a quantitative prediction for the phase

boundaries, we approximate Eq. (1) through a
standard SH equation and make use of estab-
lished results from nonlinear stability analysis [36].
Assuming plane-wave solutions with amplitude A
and wavevector k, the �1-term exerts an aver-
age force �1h(ru)2 + 2u4ui� = ��1A2k2/2 per wave-
length �. One may therefore approximate the �1-term
by an e↵ective quadratic force ��1k2u2, and similarly
the �2-term by an e↵ective cubic force �2k2u3/2 (Supple-
mentary Information). Inserting for k the most unstable
mode, k⇤ =

p
|�0|/(2�2), Eq. (1) can be approximated

by the standard SH equation

@t� = �24��42��A��B�2 � �3 (2)

�0 =
2

3
� 1

6

p
⌘4/3 + 24(1 + ⌫)2 + 164

a =
⌘4/3

12
+

6(1 + ⌫)� ⌘2/3

3
2 +

4

3
+ ã2⌃e

b = 3(1 + ⌫)3

c =
2(1 + ⌫)⌘2/3

3
c1 + (1 + ⌫)4

�1 =
1 + ⌫
2



�2 =
1 + ⌫
2

2

ã2 = �⌘4/3(c+ 3|�0|�2)
48�2

0

TABLE I: List of parameters for Eq. (1) in units h = 1, with
⌘ = 3Es/Ef , �2 = 1/12, ⌃e = (�/�c)� 1 and  = h/R. The
only remaining fitting parameter of the model is c1.
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FIG. 1: Macroscopic and microscopic wrinkling morphologies of sti↵ thin films on spherically curved soft

substrates. a-c, Theoretical predictions based on numerical steady-state solutions of Eq. (1). Color red (blue) signals inward
(outward) wrinkles. Simulation parameters: (a) �0 = �0.029, a = 0.00162, c = 0.0025, (b) �0 = �0.04, a = �1.26 · 10�6,
c = 0.002, (c) �0 = �0.02, a = 1.49 · 10�4, c = 0.0025 (see Table I). d-f, Experimentally observed patterns confirm the
transition from hexagonal (d) to labyrinth-like wrinkles (f) via a bistable region (e) when the radius-to-thickness ratio R/h (see
Fig. 2) is increased. Scale bars: 10mm. Parameters: Ef = 2100 kPa, R = 20mm, ⌫ = 0.5 and (d) Es = 230 kPa, h = 0.630mm;
(e) Es = 29 kPa, h = 0.14mm; (f) Es = 63 kPa, h = 0.10mm. g-i, Oxide layers on microscopic PDMS hemispheres exhibit
a similar transition from hexagonal to labyrinth patterns when the excess film stress is increased via changes in the ambient
ethanol concentration (indicated in %). Scale bars 250µm. Micrographs courtesy of D. Breid and A. Crosby [27].

Theory of thin-film deformation on soft substrates

Our derivation starts from the covariant Koiter shell
equations [31], obtained from three-dimensional elasticity
theory through an expansion in the film thickness h ! 0.
Koiter’s model expresses the elastic energy of a freestand-
ing curved shell in terms of deformations of its central
surface (Supplementary Information). Although the Koi-
ter equations have been successfully used in computa-
tional wrinkling studies [25, 26], their nonlinear tenso-
rial structure o↵ers limited insight beyond linear stabil-
ity analysis. We found, however, that substantial analyt-
ical simplifications are possible when a sti↵ film (Young
modulus Ef ) is adhered to a soft substrate with Young
modulus Es ⌧ Ef .

As relevant to our experiments, which are described
in detail below, we consider a spherical geometry with
radius R/h � 1 and assume that film and substrate
have the same Poisson ratio ⌫. Generalizations to non-
spherical surfaces are obtained by replacing the met-
ric tensor appropriately. Continuity across the film-
substrate interface favors deformations that are domi-
nated by the radial displacement u (Fig. 2; from now

all lengths are normalized by h). Neglecting secondary
lateral displacements, one can systematically expand the
strain energy, which contains the original Koiter shell
energy density as well as additional substrate coupling
and overstress contributions, in terms of the covariant
surface derivative ru and powers of u (Supplementary
Information). Functional variation of the elastic energy
with respect to u then yields a nonlinear partial di↵er-
ential equation for the wrinkled equilibrium state of the
film. Assuming overdamped relaxation dynamics, one
thus obtains the following GSH equation (Supplementary
Information)

@tu = �04u� �242u� au� bu2 � cu3 +

(�1 + �2u) ·
⇥
(ru)2 + 2u4u

⇤
(1)

Here, 4 denotes the Laplace-Beltrami operator, involv-
ing the surface metric tensor of the sphere and Christof-
fel symbols of the second kind, and 42 is the surface
biharmonic operator [33]. The (�0, �2)-terms describe
stress and bending, the (a, b, c)-terms comprise local film-
substrate interactions and stretching contributions, and
the (�1,�2)-terms account for higher-order stretching
forces. For �1 = �2 = 0, Eq. (1) reduces to the stan-
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energy density as well as additional substrate coupling
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Increasing film stress
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In the above equations, C, C9, and C0 are the functions of the shell

thickness hR and the modulus mismatch of Ef
!
Es

, respectively. In our

case (i.e., hR and Ef
!
Es

remain unchanged when the oxidation reac-
tion time, the mixed acid composition, and microsphere modulus are
fixed), lR and R approximately satisfy the following linear relation:

lg lR~0:3 lg R{0:33: ð8Þ

Apparently, the slope in Eq. (8) is somehow larger than those shown
in Eqs.5–7. This difference may be attributed to the different wrink-
ling systems and experimental conditions22,27. Additionally, this devi-
ation from the theoretical predictions might as well be due to the fact
that the oxidation procedure introduces a cross-linkage gradient
rather than a layer with a constant elastic property, as it is usually
assumed in the theoretical work.

Here we study the effect of the mixed acid composition on the
wrinkling morphologies on PDMS(1051) microspheres (Fig. 2).
Different from the as-reported composition modulation of the mixed
acid solution via the heating-induced volatilization of HNO3

34, the
current case is achieved by simply mixing the corresponding volume
ratio of acids and water directly. Firstly, the change of HNO3 content
is studied (Fig. 1b–e and Fig. 2a–g). For example, when
VH2SO4 : VHNO3 : VH2O is set to be 66:x:12 (x: HNO3 content), the
mixed acid solution with a too high (e.g., x 5 40, Fig. 2a) or too
low x (e.g., x 5 5, Fig. 2g) can not engender the wrinkling on the
spherical surface. The relatively suitable HNO3 content for the
wrinkling is found to be 15 , 7 with VH2SO4 : VHNO3 : VH2O of 66:
(15 , 7):12 (Fig. 1b–e and Fig. 2c–f). It is known that the oxidation
reactivity of the mixed acid solution decreases as the HNO3 content
decreases34. Thus a small HNO3 content with a low oxidation react-
ivity can not elicit the formation of the rigid oxidized outerlayer in
the PDMS substrate because PDMS has a good surface chemical
stability (Fig. 2g). When the oxidation reactivity is too high, the
oxidized PDMS microspheres deform severely and adhere to each
other (Fig. 2a). Meanwhile, a thicker and stiffer oxidized outerlayer is
generated, resulting in a higher sR

c expected from Eqs.2,329. However
the swelling-induced sR from the surface oxidation processing,
which will be discussed later, is still lower than sR

c . Consequently

no wrinkling happens in this case (Fig. 2a). As for the same large size
of the PDMS microspheres (e.g., ,5 mm in the radius, the circled one
in Fig. 2f), a careful examination shows that the wrinkling morpho-
logy evolves from the labyrinth patterns to the dimples, when the
volume ratio of the strong acid mixtures varies from 66:(15 , 11):12
(Fig. 1b and Fig. 2c,d) to 66:(9 , 7):12 (Fig. 2e,f). In the latter case, a
low overstress is obviously at least one pre-requisite for the formation
of dimples on spherical surfaces. Additionally, these results are
reminiscent of the fine modulation of sR

c and sR through alteration
of the mixed acid composition, and the internal relation of the spher-

ical wrinkling patterns with sR!
sR

c
and hR/R. According to

Eqs.2,328,29, it is known that no wrinkling is induced on too small
microspheres due to the sharp increase in sR

c . However, when the
mixed acid solution with the volume ratio of 66:(9 , 7):12 is used, no
wrinkling happens on big PDMS microspheres yet (denoted by red
arrows in Fig. 2e.f). It is assumed to be the induced sR lower than sR

c .
From the latter result shown in Fig. S2 (SI), we know that bigger
microspheres have a smaller swelling ratio in comparison with smal-
ler ones under the same conditions.

Similarly, H2SO4 composition in the mixed acid solution is also
important. A lower H2SO4 content can not lead to surface wrinkling
on PDMS microspheres (Fig. 2h,i). This is due to the fact that the
oxidation ability of the mixed acid solution comes from the syn-
ergetic effect of HNO3 and H2SO4

33. In addition, the concentration
of the mixed acid solution also needs to be carefully considered
(Fig. 2j, k). The mixed acid solution with a high concentration
(e.g., VH2SO4 : VHNO3 5 66511, no water added) leads to a porous
film with full disappearance of the original PDMS microspheres due
to the excessively strong oxidation etching (Fig. 2j). As for a relatively
low concentration (Fig. 2k), low surface oxidation reactivity is not
enough to oxidize PDMS microspheres, just as the case of a low
content of HNO3 (Fig. 2g) or H2SO4 (Fig. 2h,i) applied.

In addition, the relation of the oxidation time tr with the wrinkling
behavior has also been explored (Fig. 3). From the recorded SEM
images (Fig. 3a–e), it is seen that tr has no obvious effect on the
wrinkling morphology. A shorter oxidation time tr (e.g., 30 s,
Fig. 3a), even 10 s (data not shown here), roughly results in the

Figure 2 | SEM images of the PI-processed PDMS(1051) microspheres with different VH2 SO4
: VHNO3

: VH2 O : a) 66540512; b) 66520512; c) 66515512; d)
66513512; e) 6659512; f) 6657512; g) 6655512; h) 30511512; i) 10511512; j) 6651150; k) 66511524.
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onstrate that these surface textures belong to typical wrinkle
morphologies (Fig. 1c–e). Furthermore, when the radius R of
PDMS(1051) microspheres increases from ,2.25 mm to ,4.75 mm,
the corresponding wrinkles change from the dimple (or buckyball-
like) (Fig. 1c) to labyrinth patterns (Fig. 1d). A careful examination
further shows that under the same conditions, no surface wrinkling is
induced on a small radius of PDMS(1051) microsphere (circled one in
Fig. 1b), owing to the requirement of a larger critical wrinkling stress
according to Eqs.2,328,29.

The influence of the Young’s modulus of PDMS(n:1) microspheres
(EPDMS (n:1)

) on the wrinkling patterns is given in Fig. S1d–f (SI). In the
current case, EPDMS (n:1)

is well tuned by the weight ratio (n:1) of the
PDMS base/curing agent. Furthermore, the EPDMS (n:1)

of PDMS(n:1)

microsphere can be considered equal to that of the corresponding
planar PDMS(n:1) film. According to the planar data reported in Ref.
38, EPDMS (n:1)

is estimated to be ,2.6 MPa, 1.8 MPa, 0.9 MPa, and
0.5 MPa, when n:1 5 551, 1051, 1551, and 2051, respectively.
Evidently, the wrinkling behavior on these spherical surfaces (SI:
Fig. S1d–f) is similar to that on the PDMS(1051) microspheres
(Fig. 1b–e). When compared the roughly same radius sizes of
PDMS(n:1) microspheres (Fig. 1b and SI: Fig. S1e,f), we see the
bridged dimples are favorable on stiffer PDMS microspheres (e.g.,
SI: Fig. S1d). It should be originated from the increase of sR

c for more
rigid spherical substrates and the decrease of the resultant overstress.

Figure 1f shows the relation of the wrinkling wavelength lR with
the radius R and the modulus EPDMS (n:1)

of PDMS(n:1) microspheres,
respectively. Here the wrinkling wavelength lR is mainly estimated
on the base of the recorded SEM images. It is found that the power
law behavior between lR and R exists for the same EPDMS (n:1)

applied
(Fig. 1f). Additionally, consistent with the theoretical predictions
given by Eqs.2,3, the lR , R plots for different moduli of
PDMS(n:1) microspheres are approximately parallel to each other
in the double logarithmic coordinate (Fig. 1f). Meanwhile, the wrin-
kles triggered on stiffer PDMS microspheres have a smaller wrinkle
wavelength under the same conditions.

It is known that when exposed to the mixed strong acid solution,
the surface oxidation reaction occurs on PDMS microspheres with
the formation of an oxidized SiOx layer, just as the case of the planar
PDMS substrate applied33,34. Consequently, a film/substrate spherical
system composed of the SiOx outerlayer and the underlying PDMS
microsphere is generated. Under the standard oxidation conditions,
the thickness hR of the oxidized layer can be assumed to be equal for
different radii of PDMS(1051) microspheres. Thus in Fig. 1b–e, the
dimple patterns are formed in the oxidized PDMS(1051) microspheres
with a larger hR/R (i.e., V), whereas the labyrinth patterns take over in
the presence of a smaller hR/R. These substrate curvature-dependent
wrinkle morphologies are in good agreement with the previous
experimental and theoretical results22,25,26,28. As for the power law
between the wrinkling wavelength lR and the sphere radius R
(Fig. 1f) is also in accord with the previous results22–24,27. For example,
according to the numerical result of Yin et al., the critical wrinkling
wavelength lR

cr in a cylindrical substrate is given by23,24:

lR
cr~2phR

R
hR

! "1
4 Ef

12Es

! "1
4

: ð4Þ

It can be simplified as:

lg lR
cr~

1
4

lg RzC: ð5Þ

In the work of Cao et al., the critical wrinkling wavelength on Ag
core/SiO2 shell composite microspheres is shown in Eq.1 with the
constants of a 5 3.0 and b 5 20.8, respectively22. Alternatively, Eq.1
can be written as

lg lR
cr~0:2 lg RzC’: ð6Þ

From the experimental result of Trindade et al. on the hemispherical
surface wrinkling in elastomeric PU/PBDO spheres, we have27

lg lR~0:18 lg RzC’’: ð7Þ

Figure 1 | SEM images of PDMS(1051) microspheres before (a) and after (b–e) the PI processing. Zoomed PDMS(1051) microspheres with the radius R: c)
,2.25 mm; d) ,4.75 mm; e) ,15 mm. Frame f shows the lR , R relationship for different EPDMS (n:1)

.
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groups, which further self-condensate to form -Si-O-Si-. These
oxidation reactions have been verified in a planar PDMS substrate
by infrared spectrometry and X-ray photoelectron spectroscopy33,34.
Consequently, a thin rigid SiOx layer similar to silicon resin or silica is
formed on the PDMS microsphere and an oxidized shell/pristine
PDMS core microsphere is fabricated. On the other hand, soluble
silicates and formaldehyde are also formed from acid oxidation
cleavage of some methyl groups simultaneously33,34,39. This leads to
the above diameter decrease and the volume shrinking for the oxi-
dized microspheres (Fig. 5ai R bi and Fig. S2). Naturally, PDMS(n:1)

microsphere with a high cross-linkage density and EPDMS (n:1)
has a

relatively low volume shrinking ratio due to a better resistance to the
acid oxidation (Fig. S2c). A longer oxidation time tr leads to more
serious oxidation etching with a final larger rD (Fig. 5ai R bi and Fig.
S2a). However the as-formed SiOx layer not only can stand the fur-
ther acid oxidation, but also acts as a barrier layer to protect the
internal PDMS core from oxidation/etching. As a result, we observe
during the mixed acid oxidation (Fig. 5 ai R bi), the morphological
evolution with the initial fast decrease, the intermediate slow
decrease, and the final saturation in the diameter size, although

Figure 4 | (a) Schematic illustration of the large-scale fabrication via PII including four steps: transfer of microspheres to a sintered glass filter; mixed
acid oxidation under continuous stirring; thorough water washing; pumping out/drying. (b,c) Typical SEM images of the resulting wrinkled
microspheres.

Figure 5 | a) Plot of the rate of the diameter change (rD) during the PI processing of PDMS(1051) microspheres with different tr: ai R bi) the mixed acid
oxidation; bi R ci) the water-washing post-treatment; ci R di) 70uC drying. b) The magnification of the circled part in a).
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Increasing film stress

Accordingly, the critical wrinkling stress scales as 1/R2.
Therefore, if R can be controlled independent of t and material
properties, it can be used to dictate the applied overstress and,
consequently, the observed morphological characteristics,
according to recent reports on wrinkle morphological
control.2,23,24 In the remainder of this paper, we apply experi-
mental methods for controlling and measuring the applied
overstress for surfaces with prescribed curvature to demon-
strate this control.

Results and discussion

To generate elastomer substrates with a range of curvatures, we
rst fabricated epoxy molds with spherical depressions ranging
from 100 mm to 1 mm in radius. These were used to mold liquid
poly(dimethylsiloxane) (PDMS) prepolymer into spherical caps
on top of a at surface (Fig. 2), such that the spherical caps and
foundation formed a single, crosslinked PDMS network upon
curing. Using these molds, multiple samples with identical
curvature could be created, allowing multiple overstress
conditions to be applied to a single radius of curvature. These
samples were then exposed to UV–ozone (UVO) oxidation for
20–60 minutes, creating a thin oxide lm on the surface of the
caps and foundation. Aer treatment, the oxidized samples
were placed in sealed glass chambers containing reservoirs of a

mixture of ethanol and glycerol. The volumetric fraction of
ethanol in the reservoir was used to control the ethanol vapor
pressure inside the chambers. The oxide lm was swollen via
absorption of ethanol vapor until an equilibrium was reached
(>12 hours), aer which the surfaces of the curved and at
portions of the sample were characterized using optical
microscopy and image analysis techniques. The overstress was
measured using the curling of thin beams of UVO-treated
PDMS, according to previously reported techniques.23

Based on the predictions of Cai et al. for surfaces with a
sufficiently large radius of curvature, wrinkling patterns should
resemble those of a at wrinkling surface, regardless of the
applied swelling stress. If the critical wrinkling stress is inu-
enced by the curvature, a morphological transition is expected
as R decreases. Therefore, equibiaxial stress conditions which
drive the formation of ridge patterns on large caps will create
low-overstress wrinkling, such as dimples, on smaller caps.
Furthermore, wrinkling will be suppressed at sufficiently small
caps if the critical wrinkling stress rises above the applied
swelling stress.

To test these predictions, several system parameters were
varied to control the magnitude of the applied overstress. Most
signicantly, the curvature parameterUwas varied over an order
of magnitude by varying either R (Fig. 1a) or t, which was
controlled via UVO exposure time (Fig. 1b). The applied swelling
stress was also varied, at constant U, by changing the ethanol
vaporpressure (Fig. 1c), though this effect is the sameas reported
for at surfaces.23 Due to the inherent gradient nature of the
UVO-generated oxide layer, it is difficult to identify exact values
for t (although previous reports estimate t ! 100–200 nm30,31),
therefore we reformulate U in terms of the measurable wrinkle
wavelength l using the well-known relationship1

l ¼ 2pt( !Ef/3 !Es)
1/3 (6)

to give

U ¼ p#1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1# nf 2

#q $
l

R

%
ðE#f=3E

#
sÞ1=3 (7)

The results from varying R, with all other material and
geometric properties remaining constant, are shown in Fig. 1a.
Below a critical R, wrinkling is not observed, indicating that s <
sRc . As R increases, dimples, coalesced dimples, and nally long
ridges are observed on the surface of the wrinkling spherical
cap. The dimple patterns formed in these experiments typically
exhibited enhanced hexagonal ordering compared to similar
patterns for wrinkling at surfaces. Additionally, the charac-
teristic wrinkle wavelength on the curved surfaces was consis-
tent with that measured for the corresponding at surface.

To quantify the dimple to ridge transition, we used image
analysis on the micrographs of the wrinkled surfaces. The
micrographs were converted to binary images to delineate the
peaks and valleys of the wrinkles. Examples of resulting binary
images of dimpled and ridged structures are shown in Fig. 3.
The circularity (G), the ratio of a region's area (A) to the square of
its perimeter (P) normalized to the corresponding ratio of a
circle,

Fig. 2 Schematic of the fabrication of UVO-treated PDMS spherical cap samples.
Epoxy molds were fabricated by UV-curing liquid epoxy resin in contact with
PDMS samples. For larger radii (left), glass spheres were partially embedded in the
PDMS, while for smaller radii (right), air bubbles at the epoxy–PDMS interface
formed spherical depressions in the cured epoxy. The epoxy molds were then
used to fabricate the supported spherical cap samples which were subsequently
wrinkled using the UVO/vapor-swelling process.
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Accordingly, the critical wrinkling stress scales as 1/R2.
Therefore, if R can be controlled independent of t and material
properties, it can be used to dictate the applied overstress and,
consequently, the observed morphological characteristics,
according to recent reports on wrinkle morphological
control.2,23,24 In the remainder of this paper, we apply experi-
mental methods for controlling and measuring the applied
overstress for surfaces with prescribed curvature to demon-
strate this control.

Results and discussion

To generate elastomer substrates with a range of curvatures, we
rst fabricated epoxy molds with spherical depressions ranging
from 100 mm to 1 mm in radius. These were used to mold liquid
poly(dimethylsiloxane) (PDMS) prepolymer into spherical caps
on top of a at surface (Fig. 2), such that the spherical caps and
foundation formed a single, crosslinked PDMS network upon
curing. Using these molds, multiple samples with identical
curvature could be created, allowing multiple overstress
conditions to be applied to a single radius of curvature. These
samples were then exposed to UV–ozone (UVO) oxidation for
20–60 minutes, creating a thin oxide lm on the surface of the
caps and foundation. Aer treatment, the oxidized samples
were placed in sealed glass chambers containing reservoirs of a

mixture of ethanol and glycerol. The volumetric fraction of
ethanol in the reservoir was used to control the ethanol vapor
pressure inside the chambers. The oxide lm was swollen via
absorption of ethanol vapor until an equilibrium was reached
(>12 hours), aer which the surfaces of the curved and at
portions of the sample were characterized using optical
microscopy and image analysis techniques. The overstress was
measured using the curling of thin beams of UVO-treated
PDMS, according to previously reported techniques.23

Based on the predictions of Cai et al. for surfaces with a
sufficiently large radius of curvature, wrinkling patterns should
resemble those of a at wrinkling surface, regardless of the
applied swelling stress. If the critical wrinkling stress is inu-
enced by the curvature, a morphological transition is expected
as R decreases. Therefore, equibiaxial stress conditions which
drive the formation of ridge patterns on large caps will create
low-overstress wrinkling, such as dimples, on smaller caps.
Furthermore, wrinkling will be suppressed at sufficiently small
caps if the critical wrinkling stress rises above the applied
swelling stress.

To test these predictions, several system parameters were
varied to control the magnitude of the applied overstress. Most
signicantly, the curvature parameterUwas varied over an order
of magnitude by varying either R (Fig. 1a) or t, which was
controlled via UVO exposure time (Fig. 1b). The applied swelling
stress was also varied, at constant U, by changing the ethanol
vaporpressure (Fig. 1c), though this effect is the sameas reported
for at surfaces.23 Due to the inherent gradient nature of the
UVO-generated oxide layer, it is difficult to identify exact values
for t (although previous reports estimate t ! 100–200 nm30,31),
therefore we reformulate U in terms of the measurable wrinkle
wavelength l using the well-known relationship1

l ¼ 2pt( !Ef/3 !Es)
1/3 (6)

to give

U ¼ p#1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1# nf 2

#q $
l

R

%
ðE#f=3E

#
sÞ1=3 (7)

The results from varying R, with all other material and
geometric properties remaining constant, are shown in Fig. 1a.
Below a critical R, wrinkling is not observed, indicating that s <
sRc . As R increases, dimples, coalesced dimples, and nally long
ridges are observed on the surface of the wrinkling spherical
cap. The dimple patterns formed in these experiments typically
exhibited enhanced hexagonal ordering compared to similar
patterns for wrinkling at surfaces. Additionally, the charac-
teristic wrinkle wavelength on the curved surfaces was consis-
tent with that measured for the corresponding at surface.

To quantify the dimple to ridge transition, we used image
analysis on the micrographs of the wrinkled surfaces. The
micrographs were converted to binary images to delineate the
peaks and valleys of the wrinkles. Examples of resulting binary
images of dimpled and ridged structures are shown in Fig. 3.
The circularity (G), the ratio of a region's area (A) to the square of
its perimeter (P) normalized to the corresponding ratio of a
circle,

Fig. 2 Schematic of the fabrication of UVO-treated PDMS spherical cap samples.
Epoxy molds were fabricated by UV-curing liquid epoxy resin in contact with
PDMS samples. For larger radii (left), glass spheres were partially embedded in the
PDMS, while for smaller radii (right), air bubbles at the epoxy–PDMS interface
formed spherical depressions in the cured epoxy. The epoxy molds were then
used to fabricate the supported spherical cap samples which were subsequently
wrinkled using the UVO/vapor-swelling process.
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Accordingly, the critical wrinkling stress scales as 1/R2.
Therefore, if R can be controlled independent of t and material
properties, it can be used to dictate the applied overstress and,
consequently, the observed morphological characteristics,
according to recent reports on wrinkle morphological
control.2,23,24 In the remainder of this paper, we apply experi-
mental methods for controlling and measuring the applied
overstress for surfaces with prescribed curvature to demon-
strate this control.

Results and discussion

To generate elastomer substrates with a range of curvatures, we
rst fabricated epoxy molds with spherical depressions ranging
from 100 mm to 1 mm in radius. These were used to mold liquid
poly(dimethylsiloxane) (PDMS) prepolymer into spherical caps
on top of a at surface (Fig. 2), such that the spherical caps and
foundation formed a single, crosslinked PDMS network upon
curing. Using these molds, multiple samples with identical
curvature could be created, allowing multiple overstress
conditions to be applied to a single radius of curvature. These
samples were then exposed to UV–ozone (UVO) oxidation for
20–60 minutes, creating a thin oxide lm on the surface of the
caps and foundation. Aer treatment, the oxidized samples
were placed in sealed glass chambers containing reservoirs of a

mixture of ethanol and glycerol. The volumetric fraction of
ethanol in the reservoir was used to control the ethanol vapor
pressure inside the chambers. The oxide lm was swollen via
absorption of ethanol vapor until an equilibrium was reached
(>12 hours), aer which the surfaces of the curved and at
portions of the sample were characterized using optical
microscopy and image analysis techniques. The overstress was
measured using the curling of thin beams of UVO-treated
PDMS, according to previously reported techniques.23

Based on the predictions of Cai et al. for surfaces with a
sufficiently large radius of curvature, wrinkling patterns should
resemble those of a at wrinkling surface, regardless of the
applied swelling stress. If the critical wrinkling stress is inu-
enced by the curvature, a morphological transition is expected
as R decreases. Therefore, equibiaxial stress conditions which
drive the formation of ridge patterns on large caps will create
low-overstress wrinkling, such as dimples, on smaller caps.
Furthermore, wrinkling will be suppressed at sufficiently small
caps if the critical wrinkling stress rises above the applied
swelling stress.

To test these predictions, several system parameters were
varied to control the magnitude of the applied overstress. Most
signicantly, the curvature parameterUwas varied over an order
of magnitude by varying either R (Fig. 1a) or t, which was
controlled via UVO exposure time (Fig. 1b). The applied swelling
stress was also varied, at constant U, by changing the ethanol
vaporpressure (Fig. 1c), though this effect is the sameas reported
for at surfaces.23 Due to the inherent gradient nature of the
UVO-generated oxide layer, it is difficult to identify exact values
for t (although previous reports estimate t ! 100–200 nm30,31),
therefore we reformulate U in terms of the measurable wrinkle
wavelength l using the well-known relationship1

l ¼ 2pt( !Ef/3 !Es)
1/3 (6)

to give

U ¼ p#1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1# nf 2

#q $
l

R
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The results from varying R, with all other material and
geometric properties remaining constant, are shown in Fig. 1a.
Below a critical R, wrinkling is not observed, indicating that s <
sRc . As R increases, dimples, coalesced dimples, and nally long
ridges are observed on the surface of the wrinkling spherical
cap. The dimple patterns formed in these experiments typically
exhibited enhanced hexagonal ordering compared to similar
patterns for wrinkling at surfaces. Additionally, the charac-
teristic wrinkle wavelength on the curved surfaces was consis-
tent with that measured for the corresponding at surface.

To quantify the dimple to ridge transition, we used image
analysis on the micrographs of the wrinkled surfaces. The
micrographs were converted to binary images to delineate the
peaks and valleys of the wrinkles. Examples of resulting binary
images of dimpled and ridged structures are shown in Fig. 3.
The circularity (G), the ratio of a region's area (A) to the square of
its perimeter (P) normalized to the corresponding ratio of a
circle,

Fig. 2 Schematic of the fabrication of UVO-treated PDMS spherical cap samples.
Epoxy molds were fabricated by UV-curing liquid epoxy resin in contact with
PDMS samples. For larger radii (left), glass spheres were partially embedded in the
PDMS, while for smaller radii (right), air bubbles at the epoxy–PDMS interface
formed spherical depressions in the cured epoxy. The epoxy molds were then
used to fabricate the supported spherical cap samples which were subsequently
wrinkled using the UVO/vapor-swelling process.
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• Experiments suggest: Curvature and film stress determine wrinkling 
patterns



Wrinkling of thin films on substrates: Known 
results

• Planar case:  
System described by nonlinear Föppl-von Karman 
equations for normal displacement u and in-plane 
stresses 

• In addition to Karman’s equations, the elasticity BVP of the substrate needs to be 
solved.

u

�↵�

�11 �11

kc = 2⇡/�c =

✓
3
Es

Ef

◆ 1
3

• Linear stability analysis gives critical buckling stress and wavelength:

• Difficulties: 
• Karman equations… 
• Curved substrates?

Es: Substrate Young modulus  
Ef: Film Young modulus



Sect. 2.4] An Introduction to Shell Theory 31

2.4. The two-dimensional approach to shell theory

In a two-dimensional approach, the above minimization problems of Section 2.3
are “replaced” by a, presumably much simpler, two-dimensional problem, this time
“posed over the middle surface S of the shell”. This means that the new unknown
should be now the deformation ϕ : ω → R3 of the points of the middle surface
S = θ(ω), or, equivalently, the displacement field ζ : ω → R3 of the points of the
same surface S (the deformation and the displacement fields are related by the
equation ϕ = θ + ζ); cf. Figure 2.4-1.

θ

y

γ0

θ (γ0)

a3(y)

ζi(y)ai(y)

S

a2(y)

a1(y)

ω

Figure 2.4-1. An elastic shell modeled as a two-dimensional problem. For
ε > 0 “small enough” and data of ad hoc orders of magnitude, the
three-dimensional shell problem is “replaced” by a “two-dimensional
shell problem”. This means that the new unknowns are the three co-
variant components ζi : ω → R of the displacement field ζia

i : ω → R
3

of the points of the middle surface S = θ(ω). In this process, the
“three-dimensional” boundary conditions on Γ0 need to be replaced by
ad hoc “two-dimensional” boundary conditions on γ0. For instance, the
“boundary conditions of clamping” ζi = ∂νζ3 = 0 on γ0 (used in Koiter’s
linear equations; cf. Section 2.8) mean that the points of, and the tan-
gent spaces to, the deformed and undeformed middle surfaces coincide
along the set θ(γ0).

The two-dimensional approach to shell theory yield a variety of two-dimensional
shell models, which can be classified in two categories (the same classification applies
for both nonlinear and linearized shell models):

A first category of two-dimensional models are those that are obtained from the
three-dimesional equations of shells “by letting ε go to zero”. Depending on the
data (geometry of the middle surface of the shell, boundary conditions imposed on

Coe�cients for the spherical Swift-Hohenberg theory of elastic dimples in
depressurized shells

N. Stoop1, J. Dunkel1
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PRELIMINARIES

Let !̄ ⇢ R2 be a two-dimensional parameter domain,
y = (✓1, ✓2) 2 !̄, and ⇥ an immersion of !̄ in R3. In the
following, Greek indices run from 1 to 2, whereas Roman
indices run from 1 to 3. The immersion induces a metric
a
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identities will be useful later as well:
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The covariant derivative of a function  is
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Similarly, for a vector field V ↵ or for (0, 1)�tensor field
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The gradient of  on the surface S has components

r↵ = a↵�r
↵

 (14)

The Laplace-Beltrami operator 4
S

is defined as

4
S

 = r
↵

r↵ = a�� 
,��

� a����
��

 
,�

(15)

COVARIANT SWIFT-HOHENBERG EQUATION

In the following, we will consider the scalar Swift-
Hohenberg equation of the form
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in some flat, twodimensional domain ! ⇢ R2. Introduc-
ing the Lyapunov functional
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the above equation can be written as the variational prob-
lem
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I.e., stationary solutions of the SH equation are minimiz-
ers of U . To obtain the covariant form, we have to replace
all derivatives by their covariant version. As we will later
solve the weak form of the equation, it su�ces to rewrite
only the Lyapunov function in covariant form:
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In the following, we will compare Eq. (19) with the non-
linear Koiter shell equations of elasticity.

Towards an effective wrinkling theory

• We start from the Koiter shell (KS) model, a 
covariant formulation of the mechanics of thin 
films.

bending 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ext. forces 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ENERGY FUNCTIONAL

We extend the classical Koiter shell (KS) energy func-
tional to account for film-substrate coupling and excess
stresses.

Koiter shell equations

The KS equations describe the equilibrium of a thin
shell (precurved plate) when the thickness h of the shell
is small compared to its curvature in undeformed and
deformed configurations. The KS equations follow rigor-
ously by means of �-convergence from the full 3D elas-
ticity problem, in the limit where h ! 0 [1].

In the absence of forces and boundary conditions, we
assume that the shell adopts a stress-free equilibrium
configuration which we call the reference configuration,
parametrized by the map ⇥, with fundamental forms
a
↵�

, b
↵�

etc. as specified above. Under the influence of
forces and boundary conditions, the shell adopts a new,
deformed configuration characterized by a displacement
field defined with respect to the curved reference frame,
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ai (13)

For any point y 2 !, its displaced position is given by
⇥(y)+ (y), and the respective surface geometry will be
denoted as a
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( ), b
↵�

( ) etc.
The KS energy of the shell is given by [1]
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due to external forces pi (pressure, body loads, etc.). In
Eqs. (14), E

f

denotes the Young modulus of the film,
⌫ its Poisson ratio and H↵��� the constitutive tensor.
We focus on the case of a Kirchho↵-St. Venant material,
corresponding to an extension of Hook’s law to large de-
formations, described by

H↵��� = (1� ⌫)(a↵�a�� + a↵�a��) + 2⌫a↵�a�� (15)

The nonlinear membrane bending and stretching strains
R
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and G
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are given by [1]
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The bending energy scales with h3 and will be small
compared to the stretching contributions. We will there-
fore linearize R

↵�

( ) in the bending energy, but keep
higher-order terms in the stretching strains G

↵�

.
Normal component of bending strains. The linearized

bending strains read [1]
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With this approximation, the normal displacement com-
ponent  3 decouples from the in-plane components.
Since the dominant bending contribution comes from the
normal displacement  3, we may neglect the in-plane
components
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Normal component of stretching strains. For the
stretching strains, one has [1]
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The displacement derivative can be split into an in-plane
and normal part,
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Owing to the orthogonality between a↵ and a3, the non-
linear term in the stretching strains becomes

 
,↵

· 
,�

= t�
↵

t
��

+ s
↵

s
�

(20a)

where

t
↵�

=  
�,↵

� ��
↵�

 
�

� b
↵�

 3 (20b)

s
↵

=  3,↵ + b�
↵

 
�

(20c)

Expanding Eqs. (20) for small in-plane displacements,
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Using Eq. (7) and (19), we obtain

G
↵�

' �
↵�

( 3) ⌘
1

2
[ 3,↵ 3,� + c

↵�

( 3)
2]� b

↵�

 3

(21)

• The KS energy is

• Parameters and fields:
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Additional remarks. In our and previous [2] experi-
ments, the film stress is imposed in two ways: (i) depres-
surization of the shell-substrate system and (ii) swelling
of the film. Before the onset of the buckling transition,
depressurization leads to a constant radial deformation
u0 < 0 resulting in a reduced radius r = R+u0. Swelling
has a similar e↵ect, for if the film were free, its stress-free
radius would be larger than the substrate dictates. As
in the depressurization case, we can think of a sphere of
radius R which has been shrunken to fit a substrate of
radius r = R+ u0 where again u0 < 0. Thus, either way
of experimentally imposing some film stress is therefore
described by a radial deformation u0 of the original film.
In this deformed pre-buckling configuration, the film is
not stress-free but has additional stretching and bending
strains given by
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2
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Such homogeneous deformations will always be solutions
of the KS equations. If, however, the film stress due to
the strains in Eq. (22) becomes too large, the film will
buckle, with an inhomogeneous deformation u around
the prestressed spherical state. The strains of a buckled
configuration can then be expressed as
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To contract the strains with the constitutive tensor, it
is helpful to consider an orthogonal coordinate system,
such that the metric tensor is diagonal. Since a

↵�

is
symmetric, such a local coordinate frame can always be
found. With respect to this frame, the contraction H(⌧)
of H with any (0, 2)-tensor ⌧

↵�

can be written as
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For later use, it is convenient to introduce the abbre-
viations

R = a11c11 + a22c22 (25a)

S = a11b11 + a22b22 (25b)

Moreover, assuming equi-biaxial stresses such that the
associated strain is also equi-biaxial, we still abbreviate

�̄ = a11�̄11 = a22�̄22 (25c)

For the special case of a spherical geometry with

a11b11 = a22b22 = �1/R

a11c11 = a22c22 = 1/R2

we find

R = 2/R2, S = �2/R (26)

Relevant energy contributions

Bending energy density. Using the definition of the
Laplace-Beltrami operator, Eq. (10), and Eq. (24) with
⌧ = ⇢, the mean-curvature contribution ⇢

M

can be writ-
ten as

⇢
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= (4u)2 + 2Ru4u+ 2Ru04u+R2(u0 + u)2

The ⇢
G

-term in Eq. (24) accounts for the energy change
due to a change of Gaussian curvature. Using numerical
simulations, we find that ⇢

M

is su�cient for structure
formation, while the energy contribution due to ⇢

G

does
not change the obtained patterns. As in the classical
Helfrich model of closed surfaces[3], we therefore neglect
Gaussian curvature e↵ects, ⇢

G

⇡ 0, and only consider ⇢
M

in the following. With these assumptions, the resulting
bending energy takes the form
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To obtain Eq. (28), we used the generalized Stokes the-
orem to rewrite the second term on the rhs. of Eq. (27)
in terms of a product of gradients. The third term of
Eq. (27) evaluates to zero when integrated over a closed
surface and is therefore omitted.

Stretching energy density. For the stretching energy,
we obtain with Eq. (25c)

�
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2 (29)

= 4�0 (ru)2 +
1

2
(ru)4 � 2Su (ru)2 +Ru2 (ru)2 +
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R2
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and a similar but lengthy expression for �
G

involving
powers of ru. Considering a spherical geometry, as rel-
evant to our experiments, leads to a considerable simpli-
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Towards an effective wrinkling theory
• Bending and stretching energy are described entirely by the displacement field ѱ:

• H: constitutive tensor (material law)

2

ENERGY FUNCTIONAL

We extend the classical Koiter shell (KS) energy func-
tional to account for film-substrate coupling and excess
stresses.

Koiter shell equations

The KS equations describe the equilibrium of a thin
shell (precurved plate) when the thickness h of the shell
is small compared to its curvature in undeformed and
deformed configurations. The KS equations follow rigor-
ously by means of �-convergence from the full 3D elas-
ticity problem, in the limit where h ! 0 [1].

In the absence of forces and boundary conditions, we
assume that the shell adopts a stress-free equilibrium
configuration which we call the reference configuration,
parametrized by the map ⇥, with fundamental forms
a
↵�

, b
↵�

etc. as specified above. Under the influence of
forces and boundary conditions, the shell adopts a new,
deformed configuration characterized by a displacement
field defined with respect to the curved reference frame,

 =  1a
1 + 2a

2 + 3a
3 ⌘  

i

ai (13)

For any point y 2 !, its displaced position is given by
⇥(y)+ (y), and the respective surface geometry will be
denoted as a

↵�

( ), b
↵�

( ) etc.
The KS energy of the shell is given by [1]
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with bending energy
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and energy contributions

E
f

= �
Z

!

d! pi 
i

(14d)

due to external forces pi (pressure, body loads, etc.). In
Eqs. (14), E

f

denotes the Young modulus of the film,
⌫ its Poisson ratio and H↵��� the constitutive tensor.
We focus on the case of a Kirchho↵-St. Venant material,
corresponding to an extension of Hook’s law to large de-
formations, described by

H↵��� = (1� ⌫)(a↵�a�� + a↵�a��) + 2⌫a↵�a�� (15)

The nonlinear membrane bending and stretching strains
R
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and G
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are given by [1]
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The bending energy scales with h3 and will be small
compared to the stretching contributions. We will there-
fore linearize R

↵�

( ) in the bending energy, but keep
higher-order terms in the stretching strains G

↵�

.
Normal component of bending strains. The linearized

bending strains read [1]
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With this approximation, the normal displacement com-
ponent  3 decouples from the in-plane components.
Since the dominant bending contribution comes from the
normal displacement  3, we may neglect the in-plane
components
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The displacement derivative can be split into an in-plane
and normal part,
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Owing to the orthogonality between a↵ and a3, the non-
linear term in the stretching strains becomes
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Expanding Eqs. (20) for small in-plane displacements,
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| ⌧ | 3|, one finds to leading order
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2

ENERGY FUNCTIONAL

We extend the classical Koiter shell (KS) energy func-
tional to account for film-substrate coupling and excess
stresses.

Koiter shell equations

The KS equations describe the equilibrium of a thin
shell (precurved plate) when the thickness h of the shell
is small compared to its curvature in undeformed and
deformed configurations. The KS equations follow rigor-
ously by means of �-convergence from the full 3D elas-
ticity problem, in the limit where h ! 0 [1].

In the absence of forces and boundary conditions, we
assume that the shell adopts a stress-free equilibrium
configuration which we call the reference configuration,
parametrized by the map ⇥, with fundamental forms
a
↵�

, b
↵�

etc. as specified above. Under the influence of
forces and boundary conditions, the shell adopts a new,
deformed configuration characterized by a displacement
field defined with respect to the curved reference frame,

 =  1a
1 + 2a

2 + 3a
3 ⌘  

i

ai (13)

For any point y 2 !, its displaced position is given by
⇥(y)+ (y), and the respective surface geometry will be
denoted as a

↵�

( ), b
↵�

( ) etc.
The KS energy of the shell is given by [1]

EKS( ) = E
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( ) + E
f

( ) (14a)
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E
b

=
E

f

2(1� ⌫2)

Z

!

d!
h3

24
H↵���R

��

( )R
↵�

( ) (14b)

stretching energy

E
s

=
E

f

2(1� ⌫2)

Z

!

d!
h

2
H↵���G

��

( )G
↵�

( ) (14c)

and energy contributions
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due to external forces pi (pressure, body loads, etc.). In
Eqs. (14), E

f

denotes the Young modulus of the film,
⌫ its Poisson ratio and H↵��� the constitutive tensor.
We focus on the case of a Kirchho↵-St. Venant material,
corresponding to an extension of Hook’s law to large de-
formations, described by

H↵��� = (1� ⌫)(a↵�a�� + a↵�a��) + 2⌫a↵�a�� (15)

The nonlinear membrane bending and stretching strains
R

↵�

and G
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are given by [1]
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(16a)
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=
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The bending energy scales with h3 and will be small
compared to the stretching contributions. We will there-
fore linearize R

↵�

( ) in the bending energy, but keep
higher-order terms in the stretching strains G

↵�

.
Normal component of bending strains. The linearized

bending strains read [1]
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With this approximation, the normal displacement com-
ponent  3 decouples from the in-plane components.
Since the dominant bending contribution comes from the
normal displacement  3, we may neglect the in-plane
components
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Normal component of stretching strains. For the
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The displacement derivative can be split into an in-plane
and normal part,
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Owing to the orthogonality between a↵ and a3, the non-
linear term in the stretching strains becomes
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The stretching strains are
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ENERGY FUNCTIONAL

We extend the classical Koiter shell (KS) energy func-
tional to account for film-substrate coupling and excess
stresses.

Koiter shell equations

The KS equations describe the equilibrium of a thin
shell (precurved plate) when the thickness h of the shell
is small compared to its curvature in undeformed and
deformed configurations. The KS equations follow rigor-
ously by means of �-convergence from the full 3D elas-
ticity problem, in the limit where h ! 0 [1].

In the absence of forces and boundary conditions, we
assume that the shell adopts a stress-free equilibrium
configuration which we call the reference configuration,
parametrized by the map ⇥, with fundamental forms
a
↵�

, b
↵�

etc. as specified above. Under the influence of
forces and boundary conditions, the shell adopts a new,
deformed configuration characterized by a displacement
field defined with respect to the curved reference frame,

 =  1a
1 + 2a

2 + 3a
3 ⌘  

i

ai (13)

For any point y 2 !, its displaced position is given by
⇥(y)+ (y), and the respective surface geometry will be
denoted as a

↵�

( ), b
↵�

( ) etc.
The KS energy of the shell is given by [1]

EKS( ) = E
b
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f

( ) (14a)

with bending energy
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and energy contributions
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due to external forces pi (pressure, body loads, etc.). In
Eqs. (14), E

f

denotes the Young modulus of the film,
⌫ its Poisson ratio and H↵��� the constitutive tensor.
We focus on the case of a Kirchho↵-St. Venant material,
corresponding to an extension of Hook’s law to large de-
formations, described by

H↵��� = (1� ⌫)(a↵�a�� + a↵�a��) + 2⌫a↵�a�� (15)

The nonlinear membrane bending and stretching strains
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The bending energy scales with h3 and will be small
compared to the stretching contributions. We will there-
fore linearize R
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( ) in the bending energy, but keep
higher-order terms in the stretching strains G

↵�

.
Normal component of bending strains. The linearized

bending strains read [1]
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With this approximation, the normal displacement com-
ponent  3 decouples from the in-plane components.
Since the dominant bending contribution comes from the
normal displacement  3, we may neglect the in-plane
components
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The displacement derivative can be split into an in-plane
and normal part,
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ENERGY FUNCTIONAL

We extend the classical Koiter shell (KS) energy func-
tional to account for film-substrate coupling and excess
stresses.

Koiter shell equations

The KS equations describe the equilibrium of a thin
shell (precurved plate) when the thickness h of the shell
is small compared to its curvature in undeformed and
deformed configurations. The KS equations follow rigor-
ously by means of �-convergence from the full 3D elas-
ticity problem, in the limit where h ! 0 [1].

In the absence of forces and boundary conditions, we
assume that the shell adopts a stress-free equilibrium
configuration which we call the reference configuration,
parametrized by the map ⇥, with fundamental forms
a
↵�

, b
↵�

etc. as specified above. Under the influence of
forces and boundary conditions, the shell adopts a new,
deformed configuration characterized by a displacement
field defined with respect to the curved reference frame,

 =  1a
1 + 2a

2 + 3a
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i

ai (13)

For any point y 2 !, its displaced position is given by
⇥(y)+ (y), and the respective surface geometry will be
denoted as a
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( ), b
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( ) etc.
The KS energy of the shell is given by [1]
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due to external forces pi (pressure, body loads, etc.). In
Eqs. (14), E

f

denotes the Young modulus of the film,
⌫ its Poisson ratio and H↵��� the constitutive tensor.
We focus on the case of a Kirchho↵-St. Venant material,
corresponding to an extension of Hook’s law to large de-
formations, described by

H↵��� = (1� ⌫)(a↵�a�� + a↵�a��) + 2⌫a↵�a�� (15)
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The bending energy scales with h3 and will be small
compared to the stretching contributions. We will there-
fore linearize R
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higher-order terms in the stretching strains G
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.
Normal component of bending strains. The linearized
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With this approximation, the normal displacement com-
ponent  3 decouples from the in-plane components.
Since the dominant bending contribution comes from the
normal displacement  3, we may neglect the in-plane
components
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The displacement derivative can be split into an in-plane
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• Expand Ѱ in dominant part u (normal displacement)
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Towards an effective wrinkling theory
• Bending and stretching energy are described entirely by the displacement field ѱ:

• H: constitutive tensor (material law)

2

ENERGY FUNCTIONAL

We extend the classical Koiter shell (KS) energy func-
tional to account for film-substrate coupling and excess
stresses.

Koiter shell equations

The KS equations describe the equilibrium of a thin
shell (precurved plate) when the thickness h of the shell
is small compared to its curvature in undeformed and
deformed configurations. The KS equations follow rigor-
ously by means of �-convergence from the full 3D elas-
ticity problem, in the limit where h ! 0 [1].

In the absence of forces and boundary conditions, we
assume that the shell adopts a stress-free equilibrium
configuration which we call the reference configuration,
parametrized by the map ⇥, with fundamental forms
a
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, b
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etc. as specified above. Under the influence of
forces and boundary conditions, the shell adopts a new,
deformed configuration characterized by a displacement
field defined with respect to the curved reference frame,
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ai (13)

For any point y 2 !, its displaced position is given by
⇥(y)+ (y), and the respective surface geometry will be
denoted as a
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( ) etc.
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due to external forces pi (pressure, body loads, etc.). In
Eqs. (14), E

f

denotes the Young modulus of the film,
⌫ its Poisson ratio and H↵��� the constitutive tensor.
We focus on the case of a Kirchho↵-St. Venant material,
corresponding to an extension of Hook’s law to large de-
formations, described by
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The bending energy scales with h3 and will be small
compared to the stretching contributions. We will there-
fore linearize R
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Normal component of bending strains. The linearized

bending strains read [1]

R
↵�

' ( 
,↵�

� ��
↵�

 
,�

) · n (17)

With this approximation, the normal displacement com-
ponent  3 decouples from the in-plane components.
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ENERGY FUNCTIONAL

We extend the classical Koiter shell (KS) energy func-
tional to account for film-substrate coupling and excess
stresses.

Koiter shell equations

The KS equations describe the equilibrium of a thin
shell (precurved plate) when the thickness h of the shell
is small compared to its curvature in undeformed and
deformed configurations. The KS equations follow rigor-
ously by means of �-convergence from the full 3D elas-
ticity problem, in the limit where h ! 0 [1].

In the absence of forces and boundary conditions, we
assume that the shell adopts a stress-free equilibrium
configuration which we call the reference configuration,
parametrized by the map ⇥, with fundamental forms
a
↵�

, b
↵�

etc. as specified above. Under the influence of
forces and boundary conditions, the shell adopts a new,
deformed configuration characterized by a displacement
field defined with respect to the curved reference frame,

 =  1a
1 + 2a

2 + 3a
3 ⌘  

i

ai (13)

For any point y 2 !, its displaced position is given by
⇥(y)+ (y), and the respective surface geometry will be
denoted as a
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( ), b
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( ) etc.
The KS energy of the shell is given by [1]
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due to external forces pi (pressure, body loads, etc.). In
Eqs. (14), E

f

denotes the Young modulus of the film,
⌫ its Poisson ratio and H↵��� the constitutive tensor.
We focus on the case of a Kirchho↵-St. Venant material,
corresponding to an extension of Hook’s law to large de-
formations, described by

H↵��� = (1� ⌫)(a↵�a�� + a↵�a��) + 2⌫a↵�a�� (15)
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The bending energy scales with h3 and will be small
compared to the stretching contributions. We will there-
fore linearize R
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.
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With this approximation, the normal displacement com-
ponent  3 decouples from the in-plane components.
Since the dominant bending contribution comes from the
normal displacement  3, we may neglect the in-plane
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The stretching strains are
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ENERGY FUNCTIONAL

We extend the classical Koiter shell (KS) energy func-
tional to account for film-substrate coupling and excess
stresses.

Koiter shell equations

The KS equations describe the equilibrium of a thin
shell (precurved plate) when the thickness h of the shell
is small compared to its curvature in undeformed and
deformed configurations. The KS equations follow rigor-
ously by means of �-convergence from the full 3D elas-
ticity problem, in the limit where h ! 0 [1].

In the absence of forces and boundary conditions, we
assume that the shell adopts a stress-free equilibrium
configuration which we call the reference configuration,
parametrized by the map ⇥, with fundamental forms
a
↵�

, b
↵�

etc. as specified above. Under the influence of
forces and boundary conditions, the shell adopts a new,
deformed configuration characterized by a displacement
field defined with respect to the curved reference frame,

 =  1a
1 + 2a

2 + 3a
3 ⌘  

i

ai (13)

For any point y 2 !, its displaced position is given by
⇥(y)+ (y), and the respective surface geometry will be
denoted as a
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( ), b
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( ) etc.
The KS energy of the shell is given by [1]

EKS( ) = E
b

( ) + E
s

( ) + E
f

( ) (14a)

with bending energy

E
b

=
E

f

2(1� ⌫2)

Z

!

d!
h3

24
H↵���R

��

( )R
↵�

( ) (14b)

stretching energy

E
s

=
E

f

2(1� ⌫2)

Z

!

d!
h

2
H↵���G

��

( )G
↵�

( ) (14c)

and energy contributions

E
f

= �
Z

!

d! pi 
i

(14d)

due to external forces pi (pressure, body loads, etc.). In
Eqs. (14), E

f

denotes the Young modulus of the film,
⌫ its Poisson ratio and H↵��� the constitutive tensor.
We focus on the case of a Kirchho↵-St. Venant material,
corresponding to an extension of Hook’s law to large de-
formations, described by

H↵��� = (1� ⌫)(a↵�a�� + a↵�a��) + 2⌫a↵�a�� (15)

The nonlinear membrane bending and stretching strains
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The bending energy scales with h3 and will be small
compared to the stretching contributions. We will there-
fore linearize R
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( ) in the bending energy, but keep
higher-order terms in the stretching strains G
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.
Normal component of bending strains. The linearized
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With this approximation, the normal displacement com-
ponent  3 decouples from the in-plane components.
Since the dominant bending contribution comes from the
normal displacement  3, we may neglect the in-plane
components
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ENERGY FUNCTIONAL

We extend the classical Koiter shell (KS) energy func-
tional to account for film-substrate coupling and excess
stresses.

Koiter shell equations

The KS equations describe the equilibrium of a thin
shell (precurved plate) when the thickness h of the shell
is small compared to its curvature in undeformed and
deformed configurations. The KS equations follow rigor-
ously by means of �-convergence from the full 3D elas-
ticity problem, in the limit where h ! 0 [1].

In the absence of forces and boundary conditions, we
assume that the shell adopts a stress-free equilibrium
configuration which we call the reference configuration,
parametrized by the map ⇥, with fundamental forms
a
↵�

, b
↵�

etc. as specified above. Under the influence of
forces and boundary conditions, the shell adopts a new,
deformed configuration characterized by a displacement
field defined with respect to the curved reference frame,

 =  1a
1 + 2a

2 + 3a
3 ⌘  

i

ai (13)

For any point y 2 !, its displaced position is given by
⇥(y)+ (y), and the respective surface geometry will be
denoted as a

↵�

( ), b
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( ) etc.
The KS energy of the shell is given by [1]
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due to external forces pi (pressure, body loads, etc.). In
Eqs. (14), E

f

denotes the Young modulus of the film,
⌫ its Poisson ratio and H↵��� the constitutive tensor.
We focus on the case of a Kirchho↵-St. Venant material,
corresponding to an extension of Hook’s law to large de-
formations, described by

H↵��� = (1� ⌫)(a↵�a�� + a↵�a��) + 2⌫a↵�a�� (15)

The nonlinear membrane bending and stretching strains
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The bending energy scales with h3 and will be small
compared to the stretching contributions. We will there-
fore linearize R
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( ) in the bending energy, but keep
higher-order terms in the stretching strains G
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.
Normal component of bending strains. The linearized
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With this approximation, the normal displacement com-
ponent  3 decouples from the in-plane components.
Since the dominant bending contribution comes from the
normal displacement  3, we may neglect the in-plane
components
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• Expand Ѱ in dominant part u (normal displacement)
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Towards an effective wrinkling theory
• Bending and stretching energy are described entirely by the displacement field ѱ:

• H: constitutive tensor (material law)
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ENERGY FUNCTIONAL

We extend the classical Koiter shell (KS) energy func-
tional to account for film-substrate coupling and excess
stresses.

Koiter shell equations

The KS equations describe the equilibrium of a thin
shell (precurved plate) when the thickness h of the shell
is small compared to its curvature in undeformed and
deformed configurations. The KS equations follow rigor-
ously by means of �-convergence from the full 3D elas-
ticity problem, in the limit where h ! 0 [1].

In the absence of forces and boundary conditions, we
assume that the shell adopts a stress-free equilibrium
configuration which we call the reference configuration,
parametrized by the map ⇥, with fundamental forms
a
↵�

, b
↵�

etc. as specified above. Under the influence of
forces and boundary conditions, the shell adopts a new,
deformed configuration characterized by a displacement
field defined with respect to the curved reference frame,

 =  1a
1 + 2a

2 + 3a
3 ⌘  

i

ai (13)

For any point y 2 !, its displaced position is given by
⇥(y)+ (y), and the respective surface geometry will be
denoted as a
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( ), b
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( ) etc.
The KS energy of the shell is given by [1]
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due to external forces pi (pressure, body loads, etc.). In
Eqs. (14), E

f

denotes the Young modulus of the film,
⌫ its Poisson ratio and H↵��� the constitutive tensor.
We focus on the case of a Kirchho↵-St. Venant material,
corresponding to an extension of Hook’s law to large de-
formations, described by

H↵��� = (1� ⌫)(a↵�a�� + a↵�a��) + 2⌫a↵�a�� (15)

The nonlinear membrane bending and stretching strains
R

↵�

and G
↵�

are given by [1]

R
↵�

= b
↵�

( )� b
↵�

(16a)

G
↵�

=
1

2
[a

↵�

( )� a
↵�

] (16b)

The bending energy scales with h3 and will be small
compared to the stretching contributions. We will there-
fore linearize R
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higher-order terms in the stretching strains G
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.
Normal component of bending strains. The linearized

bending strains read [1]
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With this approximation, the normal displacement com-
ponent  3 decouples from the in-plane components.
Since the dominant bending contribution comes from the
normal displacement  3, we may neglect the in-plane
components
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ENERGY FUNCTIONAL

We extend the classical Koiter shell (KS) energy func-
tional to account for film-substrate coupling and excess
stresses.

Koiter shell equations

The KS equations describe the equilibrium of a thin
shell (precurved plate) when the thickness h of the shell
is small compared to its curvature in undeformed and
deformed configurations. The KS equations follow rigor-
ously by means of �-convergence from the full 3D elas-
ticity problem, in the limit where h ! 0 [1].

In the absence of forces and boundary conditions, we
assume that the shell adopts a stress-free equilibrium
configuration which we call the reference configuration,
parametrized by the map ⇥, with fundamental forms
a
↵�

, b
↵�

etc. as specified above. Under the influence of
forces and boundary conditions, the shell adopts a new,
deformed configuration characterized by a displacement
field defined with respect to the curved reference frame,
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For any point y 2 !, its displaced position is given by
⇥(y)+ (y), and the respective surface geometry will be
denoted as a
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The KS energy of the shell is given by [1]

EKS( ) = E
b

( ) + E
s

( ) + E
f

( ) (14a)

with bending energy

E
b

=
E

f

2(1� ⌫2)

Z

!

d!
h3

24
H↵���R

��

( )R
↵�

( ) (14b)

stretching energy

E
s

=
E

f

2(1� ⌫2)

Z

!

d!
h

2
H↵���G

��

( )G
↵�

( ) (14c)

and energy contributions

E
f

= �
Z

!

d! pi 
i

(14d)

due to external forces pi (pressure, body loads, etc.). In
Eqs. (14), E

f

denotes the Young modulus of the film,
⌫ its Poisson ratio and H↵��� the constitutive tensor.
We focus on the case of a Kirchho↵-St. Venant material,
corresponding to an extension of Hook’s law to large de-
formations, described by
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The bending energy scales with h3 and will be small
compared to the stretching contributions. We will there-
fore linearize R
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( ) in the bending energy, but keep
higher-order terms in the stretching strains G
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.
Normal component of bending strains. The linearized
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With this approximation, the normal displacement com-
ponent  3 decouples from the in-plane components.
Since the dominant bending contribution comes from the
normal displacement  3, we may neglect the in-plane
components
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The displacement derivative can be split into an in-plane
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Expanding Eqs. (20) for small in-plane displacements,
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The stretching strains are

2

ENERGY FUNCTIONAL

We extend the classical Koiter shell (KS) energy func-
tional to account for film-substrate coupling and excess
stresses.

Koiter shell equations

The KS equations describe the equilibrium of a thin
shell (precurved plate) when the thickness h of the shell
is small compared to its curvature in undeformed and
deformed configurations. The KS equations follow rigor-
ously by means of �-convergence from the full 3D elas-
ticity problem, in the limit where h ! 0 [1].

In the absence of forces and boundary conditions, we
assume that the shell adopts a stress-free equilibrium
configuration which we call the reference configuration,
parametrized by the map ⇥, with fundamental forms
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etc. as specified above. Under the influence of
forces and boundary conditions, the shell adopts a new,
deformed configuration characterized by a displacement
field defined with respect to the curved reference frame,
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due to external forces pi (pressure, body loads, etc.). In
Eqs. (14), E

f

denotes the Young modulus of the film,
⌫ its Poisson ratio and H↵��� the constitutive tensor.
We focus on the case of a Kirchho↵-St. Venant material,
corresponding to an extension of Hook’s law to large de-
formations, described by
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The bending strains are

undeformeddeformed
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ENERGY FUNCTIONAL

We extend the classical Koiter shell (KS) energy func-
tional to account for film-substrate coupling and excess
stresses.

Koiter shell equations

The KS equations describe the equilibrium of a thin
shell (precurved plate) when the thickness h of the shell
is small compared to its curvature in undeformed and
deformed configurations. The KS equations follow rigor-
ously by means of �-convergence from the full 3D elas-
ticity problem, in the limit where h ! 0 [1].

In the absence of forces and boundary conditions, we
assume that the shell adopts a stress-free equilibrium
configuration which we call the reference configuration,
parametrized by the map ⇥, with fundamental forms
a
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, b
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etc. as specified above. Under the influence of
forces and boundary conditions, the shell adopts a new,
deformed configuration characterized by a displacement
field defined with respect to the curved reference frame,
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For any point y 2 !, its displaced position is given by
⇥(y)+ (y), and the respective surface geometry will be
denoted as a
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due to external forces pi (pressure, body loads, etc.). In
Eqs. (14), E

f

denotes the Young modulus of the film,
⌫ its Poisson ratio and H↵��� the constitutive tensor.
We focus on the case of a Kirchho↵-St. Venant material,
corresponding to an extension of Hook’s law to large de-
formations, described by
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The bending energy scales with h3 and will be small
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• Expand Ѱ in dominant part u (normal displacement)



Towards an effective wrinkling theory

• Substrate energy contribution: Nonlinear spring, Young modulus Es
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Substrate coupling energy. In our experiments, the
thin film is coupled to a curved soft substrate. To sim-
plify further analysis, we assume in the following that the
substrate has the same Poisson ratio ⌫ as the film, as is
the case in our experiments. We model the substrate cou-
pling as a nonlinear spring by adding a substrate energy
E
sub

to the KS energy from Eq. (14a), where
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with E
s

denoting the Young modulus of the substrate.
The constant film thickness h could have been absorbed
into the coe�cients ã and c̃, but simplifies subsequent for-
mulas. Note that E

sub

contains a term linear in u because
we are considering the state of the film-substrate system
around a flat but displaced equilibrium solution u0. This
linear term gives rise to a corresponding constant normal
force that is needed to balance the internal normal forces
of the film.

Energy due to excess film stress. Finally, we still have
to account for the excess film stress
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where � is the film stress and �
c

the critical stress needed
for wrinkling. In our model, the energy due to excess film
stress is included by adding a term
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to the KS energy from Eq. (14a). The energy contri-
bution E

�

is crucial for capturing the system behavior
beyond the wrinkling instability. We discuss below how
the dimensionless parameter ã2 is related to the elastic
properties of the substrate. The u2-dependence of E

�

is
a classical result from elastic wrinkling theory [4], ensur-
ing that the amplitude-stress relationship in the e↵ective
model agrees with classical wrinkling theory, as is shown
in detail further below.

Total energy density. Adding the contributions due
to substrate coupling, external forces and excess stress to
the KS energy (14a), we obtain the total elastic energy

E =
E

f

1� ⌫2
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To obtain this e↵ective energy functional, the following
additional simplifications and assumptions were adopted:

• Constant terms. We neglected all constant terms
in the energy, as they will not contribute to the
equations of motion, obtained by variation of the
energy with respect to u.

• Terms linear in u. We note that the term linear
in u gives rise to a inhomogeneous, constant term
in the equation of motion. However, u = 0 always
is an equilibrium solution by construction. More
precisely, u = 0 means that the film is radially dis-
placed by u0, which is a fundamental solution of
the problem. Therefore, the inhomogeneous term
in the equation of motion has to vanish, implying
that the coe�cient of the energy term linear in u
must be zero. The mechanical interpretation of this
condition is straightforward: For u = 0 to be an
equilibrium solution, the sum of all normal forces
acting on the film must vanish.

• Quartic terms. The quartic terms in u and
ru ensure that the e↵ective theory remains sta-
ble above the wrinkling threshold, as these terms
limit the growth of the most unstable modes. To
keep the theory as simple as possible, we only
include the dominant u4-contribution and neglect
terms / (ru)4.
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Substrate coupling energy. In our experiments, the
thin film is coupled to a curved soft substrate. To sim-
plify further analysis, we assume in the following that the
substrate has the same Poisson ratio ⌫ as the film, as is
the case in our experiments. We model the substrate cou-
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with E
s

denoting the Young modulus of the substrate.
The constant film thickness h could have been absorbed
into the coe�cients ã and c̃, but simplifies subsequent for-
mulas. Note that E

sub

contains a term linear in u because
we are considering the state of the film-substrate system
around a flat but displaced equilibrium solution u0. This
linear term gives rise to a corresponding constant normal
force that is needed to balance the internal normal forces
of the film.

Energy due to excess film stress. Finally, we still have
to account for the excess film stress
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to the KS energy from Eq. (14a). The energy contri-
bution E
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is crucial for capturing the system behavior
beyond the wrinkling instability. We discuss below how
the dimensionless parameter ã2 is related to the elastic
properties of the substrate. The u2-dependence of E

�

is
a classical result from elastic wrinkling theory [4], ensur-
ing that the amplitude-stress relationship in the e↵ective
model agrees with classical wrinkling theory, as is shown
in detail further below.

Total energy density. Adding the contributions due
to substrate coupling, external forces and excess stress to
the KS energy (14a), we obtain the total elastic energy
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To obtain this e↵ective energy functional, the following
additional simplifications and assumptions were adopted:

• Constant terms. We neglected all constant terms
in the energy, as they will not contribute to the
equations of motion, obtained by variation of the
energy with respect to u.

• Terms linear in u. We note that the term linear
in u gives rise to a inhomogeneous, constant term
in the equation of motion. However, u = 0 always
is an equilibrium solution by construction. More
precisely, u = 0 means that the film is radially dis-
placed by u0, which is a fundamental solution of
the problem. Therefore, the inhomogeneous term
in the equation of motion has to vanish, implying
that the coe�cient of the energy term linear in u
must be zero. The mechanical interpretation of this
condition is straightforward: For u = 0 to be an
equilibrium solution, the sum of all normal forces
acting on the film must vanish.

• Quartic terms. The quartic terms in u and
ru ensure that the e↵ective theory remains sta-
ble above the wrinkling threshold, as these terms
limit the growth of the most unstable modes. To
keep the theory as simple as possible, we only
include the dominant u4-contribution and neglect
terms / (ru)4.
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Substrate coupling energy. In our experiments, the
thin film is coupled to a curved soft substrate. To sim-
plify further analysis, we assume in the following that the
substrate has the same Poisson ratio ⌫ as the film, as is
the case in our experiments. We model the substrate cou-
pling as a nonlinear spring by adding a substrate energy
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with E
s

denoting the Young modulus of the substrate.
The constant film thickness h could have been absorbed
into the coe�cients ã and c̃, but simplifies subsequent for-
mulas. Note that E

sub

contains a term linear in u because
we are considering the state of the film-substrate system
around a flat but displaced equilibrium solution u0. This
linear term gives rise to a corresponding constant normal
force that is needed to balance the internal normal forces
of the film.

Energy due to excess film stress. Finally, we still have
to account for the excess film stress
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where � is the film stress and �
c

the critical stress needed
for wrinkling. In our model, the energy due to excess film
stress is included by adding a term
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to the KS energy from Eq. (14a). The energy contri-
bution E

�

is crucial for capturing the system behavior
beyond the wrinkling instability. We discuss below how
the dimensionless parameter ã2 is related to the elastic
properties of the substrate. The u2-dependence of E

�

is
a classical result from elastic wrinkling theory [4], ensur-
ing that the amplitude-stress relationship in the e↵ective
model agrees with classical wrinkling theory, as is shown
in detail further below.

Total energy density. Adding the contributions due
to substrate coupling, external forces and excess stress to
the KS energy (14a), we obtain the total elastic energy
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To obtain this e↵ective energy functional, the following
additional simplifications and assumptions were adopted:

• Constant terms. We neglected all constant terms
in the energy, as they will not contribute to the
equations of motion, obtained by variation of the
energy with respect to u.

• Terms linear in u. We note that the term linear
in u gives rise to a inhomogeneous, constant term
in the equation of motion. However, u = 0 always
is an equilibrium solution by construction. More
precisely, u = 0 means that the film is radially dis-
placed by u0, which is a fundamental solution of
the problem. Therefore, the inhomogeneous term
in the equation of motion has to vanish, implying
that the coe�cient of the energy term linear in u
must be zero. The mechanical interpretation of this
condition is straightforward: For u = 0 to be an
equilibrium solution, the sum of all normal forces
acting on the film must vanish.

• Quartic terms. The quartic terms in u and
ru ensure that the e↵ective theory remains sta-
ble above the wrinkling threshold, as these terms
limit the growth of the most unstable modes. To
keep the theory as simple as possible, we only
include the dominant u4-contribution and neglect
terms / (ru)4.
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Substrate coupling energy. In our experiments, the
thin film is coupled to a curved soft substrate. To sim-
plify further analysis, we assume in the following that the
substrate has the same Poisson ratio ⌫ as the film, as is
the case in our experiments. We model the substrate cou-
pling as a nonlinear spring by adding a substrate energy
E
sub

to the KS energy from Eq. (14a), where
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with E
s

denoting the Young modulus of the substrate.
The constant film thickness h could have been absorbed
into the coe�cients ã and c̃, but simplifies subsequent for-
mulas. Note that E

sub

contains a term linear in u because
we are considering the state of the film-substrate system
around a flat but displaced equilibrium solution u0. This
linear term gives rise to a corresponding constant normal
force that is needed to balance the internal normal forces
of the film.

Energy due to excess film stress. Finally, we still have
to account for the excess film stress
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where � is the film stress and �
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the critical stress needed
for wrinkling. In our model, the energy due to excess film
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to the KS energy from Eq. (14a). The energy contri-
bution E
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is crucial for capturing the system behavior
beyond the wrinkling instability. We discuss below how
the dimensionless parameter ã2 is related to the elastic
properties of the substrate. The u2-dependence of E
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is
a classical result from elastic wrinkling theory [4], ensur-
ing that the amplitude-stress relationship in the e↵ective
model agrees with classical wrinkling theory, as is shown
in detail further below.

Total energy density. Adding the contributions due
to substrate coupling, external forces and excess stress to
the KS energy (14a), we obtain the total elastic energy
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To obtain this e↵ective energy functional, the following
additional simplifications and assumptions were adopted:

• Constant terms. We neglected all constant terms
in the energy, as they will not contribute to the
equations of motion, obtained by variation of the
energy with respect to u.

• Terms linear in u. We note that the term linear
in u gives rise to a inhomogeneous, constant term
in the equation of motion. However, u = 0 always
is an equilibrium solution by construction. More
precisely, u = 0 means that the film is radially dis-
placed by u0, which is a fundamental solution of
the problem. Therefore, the inhomogeneous term
in the equation of motion has to vanish, implying
that the coe�cient of the energy term linear in u
must be zero. The mechanical interpretation of this
condition is straightforward: For u = 0 to be an
equilibrium solution, the sum of all normal forces
acting on the film must vanish.

• Quartic terms. The quartic terms in u and
ru ensure that the e↵ective theory remains sta-
ble above the wrinkling threshold, as these terms
limit the growth of the most unstable modes. To
keep the theory as simple as possible, we only
include the dominant u4-contribution and neglect
terms / (ru)4.

Variation of total energy w.r.t. u gives effective wrinkling equation.
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Effective wrinkling equation
Assuming overdamped dynamics, we obtain an effective wrinkling 
equation for the normal displacement field u:

symmetry-breaking  
depends on curvature:
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Figure 1 | Macroscopic and microscopic wrinkling morphologies of sti� thin films on spherically curved soft substrates. a–c, Theoretical predictions
based on numerical steady-state solutions of equation (1). Colour red (blue) signals inward (outward) wrinkles. Simulation parameters: (a) �0 =�0.029,
a=0.00162, c=0.0025; (b) �0 =�0.04, a=�1.26⇥ 10�6, c=0.002; (c) �0 =�0.02, a= 1.49⇥ 10�4, c=0.0025 (see Table 1). d–f, Experimentally
observed patterns confirm the transition from hexagonal (d) to labyrinth-like wrinkles (f) via a bistable region (e) when the radius-to-thickness ratio R/h
(see Fig. 2) is increased. Scale bars, 10 mm. Parameters: Ef =2,100 kPa, R=20 mm, ⌫ =0.5 and (d) Es =230 kPa, h=0.630 mm; (e) Es =29 kPa,
h=0.14 mm; (f) Es =63 kPa, h=0.10 mm. g–i, Oxide layers on microscopic PDMS hemispheres exhibit a similar transition from hexagonal to labyrinth
patterns when the excess film stress is increased through changes in the ambient ethanol concentration (indicated in per cent). Scale bars, 250 µm.
Micrographs courtesy of D. Breid and A. Crosby28.
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Figure 2 | Notation and experimental system. a, Schematic of a curved
thin film adhering to a soft spherical substrate of outer radius R. b, The film
(thickness h) is driven towards a wrinkling instability by the compressive
film stress � , leading to a wrinkling pattern with wavelength � and radial
displacement u. c, The experimental system consists of two merged
hemispherical caps. An air channel allows one to tune the film stress �

through the pressure di�erence 1p=pe �pi.

computational wrinkling studies26,27, their nonlinear tensorial
structure o�ers limited insight beyond linear stability analysis.
We found, however, that substantial analytical simplifications are
possible when a sti� film (Young modulus Ef) is adhered to a soft
substrate with Young modulus Es ⌧Ef.

As relevant to our experiments, which are described in detail
below, we consider a spherical geometry with radius R/h� 1 and

assume that film and substrate have the same Poisson ratio ⌫. The
generalization to non-spherical surfaces is obtained by replacing
the metric tensor appropriately (Supplementary Information).
Continuity across the film–substrate interface favours deformations
that are dominated by the radial displacement u (Fig. 2; from here
onwards all lengths are normalized by h). Neglecting secondary
lateral displacements, one can systematically expand the strain
energy, which contains the original Koiter shell energy density as
well as additional substrate coupling and overstress contributions,
in terms of the covariant surface derivative ru and powers of u
(Supplementary Information). Functional variation of the elastic
energy with respect to u then yields a nonlinear partial di�erential
equation for the wrinkled equilibrium state of the film. Assuming
overdamped relaxation dynamics, one thus obtains the following
GSH equation (Supplementary Information)

@t u = �01u��21
2u�au�bu2 �cu3

+�1
⇥
(ru)2 +2u1u

⇤+�2
⇥
u(ru)2 +u21u

⇤
(1)

Here, 1 denotes the Laplace–Beltrami operator, involving the
surface metric tensor of the sphere and Christo�el symbols of
the second kind, and 12 is the surface biharmonic operator35.
The (�0, �2) terms describe stress and bending, the (a, b, c)
terms comprise local film–substrate interactions and stretching
contributions, and the (�1, �2) terms account for higher-order
stretching forces. For �1 = �2 = 0, equation (1) reduces to the
standard Swift–Hohenberg equation, as originally derived in
the context of Rayleigh–Bénard convection10,36. The additional
(�1, �2) terms will prove crucial below when matching theory
and experiments. The generalization of equation (1) for arbitrary
surfaces is given in Supplementary Equation (34).

The detailed derivation (Supplementary Information), combined
with systematic asymptotic analysis of the planar limit R/h!1,
allows us to express the coe�cients in equation (1) in terms of
the standard material parameters: Poisson ratio of the film ⌫,
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Effective wrinkling equation
Assuming overdamped dynamics, we obtain an effective wrinkling 
equation for the normal displacement field u:
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depends on curvature:
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Figure 1 | Macroscopic and microscopic wrinkling morphologies of sti� thin films on spherically curved soft substrates. a–c, Theoretical predictions
based on numerical steady-state solutions of equation (1). Colour red (blue) signals inward (outward) wrinkles. Simulation parameters: (a) �0 =�0.029,
a=0.00162, c=0.0025; (b) �0 =�0.04, a=�1.26⇥ 10�6, c=0.002; (c) �0 =�0.02, a= 1.49⇥ 10�4, c=0.0025 (see Table 1). d–f, Experimentally
observed patterns confirm the transition from hexagonal (d) to labyrinth-like wrinkles (f) via a bistable region (e) when the radius-to-thickness ratio R/h
(see Fig. 2) is increased. Scale bars, 10 mm. Parameters: Ef =2,100 kPa, R=20 mm, ⌫ =0.5 and (d) Es =230 kPa, h=0.630 mm; (e) Es =29 kPa,
h=0.14 mm; (f) Es =63 kPa, h=0.10 mm. g–i, Oxide layers on microscopic PDMS hemispheres exhibit a similar transition from hexagonal to labyrinth
patterns when the excess film stress is increased through changes in the ambient ethanol concentration (indicated in per cent). Scale bars, 250 µm.
Micrographs courtesy of D. Breid and A. Crosby28.
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Figure 2 | Notation and experimental system. a, Schematic of a curved
thin film adhering to a soft spherical substrate of outer radius R. b, The film
(thickness h) is driven towards a wrinkling instability by the compressive
film stress � , leading to a wrinkling pattern with wavelength � and radial
displacement u. c, The experimental system consists of two merged
hemispherical caps. An air channel allows one to tune the film stress �

through the pressure di�erence 1p=pe �pi.

computational wrinkling studies26,27, their nonlinear tensorial
structure o�ers limited insight beyond linear stability analysis.
We found, however, that substantial analytical simplifications are
possible when a sti� film (Young modulus Ef) is adhered to a soft
substrate with Young modulus Es ⌧Ef.

As relevant to our experiments, which are described in detail
below, we consider a spherical geometry with radius R/h� 1 and

assume that film and substrate have the same Poisson ratio ⌫. The
generalization to non-spherical surfaces is obtained by replacing
the metric tensor appropriately (Supplementary Information).
Continuity across the film–substrate interface favours deformations
that are dominated by the radial displacement u (Fig. 2; from here
onwards all lengths are normalized by h). Neglecting secondary
lateral displacements, one can systematically expand the strain
energy, which contains the original Koiter shell energy density as
well as additional substrate coupling and overstress contributions,
in terms of the covariant surface derivative ru and powers of u
(Supplementary Information). Functional variation of the elastic
energy with respect to u then yields a nonlinear partial di�erential
equation for the wrinkled equilibrium state of the film. Assuming
overdamped relaxation dynamics, one thus obtains the following
GSH equation (Supplementary Information)
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Here, 1 denotes the Laplace–Beltrami operator, involving the
surface metric tensor of the sphere and Christo�el symbols of
the second kind, and 12 is the surface biharmonic operator35.
The (�0, �2) terms describe stress and bending, the (a, b, c)
terms comprise local film–substrate interactions and stretching
contributions, and the (�1, �2) terms account for higher-order
stretching forces. For �1 = �2 = 0, equation (1) reduces to the
standard Swift–Hohenberg equation, as originally derived in
the context of Rayleigh–Bénard convection10,36. The additional
(�1, �2) terms will prove crucial below when matching theory
and experiments. The generalization of equation (1) for arbitrary
surfaces is given in Supplementary Equation (34).

The detailed derivation (Supplementary Information), combined
with systematic asymptotic analysis of the planar limit R/h!1,
allows us to express the coe�cients in equation (1) in terms of
the standard material parameters: Poisson ratio of the film ⌫,
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FIG. 1: Macroscopic and microscopic wrinkling morphologies of sti↵ thin films on spherically curved soft

substrates. a-c, Theoretical predictions based on numerical steady-state solutions of Eq. (1). Color red (blue) signals inward
(outward) wrinkles. Simulation parameters: (a) �0 = �0.029, a = 0.00162, c = 0.0025, (b) �0 = �0.04, a = �1.26 · 10�6,
c = 0.002, (c) �0 = �0.02, a = 1.49 · 10�4, c = 0.0025 (see Table I). d-f, Experimentally observed patterns confirm the
transition from hexagonal (d) to labyrinth-like wrinkles (f) via a bistable region (e) when the radius-to-thickness ratio R/h (see
Fig. 2) is increased. Scale bars: 10mm. Parameters: Ef = 2100 kPa, R = 20mm, ⌫ = 0.5 and (d) Es = 230 kPa, h = 0.630mm;
(e) Es = 29 kPa, h = 0.14mm; (f) Es = 63 kPa, h = 0.10mm. g-i, Oxide layers on microscopic PDMS hemispheres exhibit
a similar transition from hexagonal to labyrinth patterns when the excess film stress is increased via changes in the ambient
ethanol concentration (indicated in %). Scale bars 250µm. Micrographs courtesy of D. Breid and A. Crosby [27].

Theory of thin-film deformation on soft substrates

Our derivation starts from the covariant Koiter shell
equations [31], obtained from three-dimensional elasticity
theory through an expansion in the film thickness h ! 0.
Koiter’s model expresses the elastic energy of a freestand-
ing curved shell in terms of deformations of its central
surface (Supplementary Information). Although the Koi-
ter equations have been successfully used in computa-
tional wrinkling studies [25, 26], their nonlinear tenso-
rial structure o↵ers limited insight beyond linear stabil-
ity analysis. We found, however, that substantial analyt-
ical simplifications are possible when a sti↵ film (Young
modulus Ef ) is adhered to a soft substrate with Young
modulus Es ⌧ Ef .

As relevant to our experiments, which are described
in detail below, we consider a spherical geometry with
radius R/h � 1 and assume that film and substrate
have the same Poisson ratio ⌫. Generalizations to non-
spherical surfaces are obtained by replacing the met-
ric tensor appropriately. Continuity across the film-
substrate interface favors deformations that are domi-
nated by the radial displacement u (Fig. 2; from now

all lengths are normalized by h). Neglecting secondary
lateral displacements, one can systematically expand the
strain energy, which contains the original Koiter shell
energy density as well as additional substrate coupling
and overstress contributions, in terms of the covariant
surface derivative ru and powers of u (Supplementary
Information). Functional variation of the elastic energy
with respect to u then yields a nonlinear partial di↵er-
ential equation for the wrinkled equilibrium state of the
film. Assuming overdamped relaxation dynamics, one
thus obtains the following GSH equation (Supplementary
Information)

@tu = �04u� �242u� au� bu2 � cu3 +

(�1 + �2u) ·
⇥
(ru)2 + 2u4u

⇤
(1)

Here, 4 denotes the Laplace-Beltrami operator, involv-
ing the surface metric tensor of the sphere and Christof-
fel symbols of the second kind, and 42 is the surface
biharmonic operator [33]. The (�0, �2)-terms describe
stress and bending, the (a, b, c)-terms comprise local film-
substrate interactions and stretching contributions, and
the (�1,�2)-terms account for higher-order stretching
forces. For �1 = �2 = 0, Eq. (1) reduces to the stan-



A word about numerics…
• Need to solve covariant, 4th order PDE on a surface… 

• Use a spline-based Finite Element method (Cirak, 2001):
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5.2. C1 FINITE ELEMENTS BASED ON LOOP SUBDIVISION
SURFACES

Fig. 5.2: Regular patch. The shaded region is the parametric domain of the
limit surface over the regular triangle.

The limit surface x(�1, �2) of ⇥k is then given by the superposition of the
well-known quartic box spline functions N I(�1, �2),

x(�1, �2) =
12�

I=1

N I(�1, �2)xI , (5.27)

where the sum extends over all nodes of what is called the regular patch.
The regular patch of a triangle is the union of the 1-rings of its nodes, i.e.
the 12 nodes as depicted in Fig. 5.2, and the index I here denotes the local
numbering of the patch nodes as shown in the figure. For the precise form of
the spline functions N I , the reader is referred to Appendix C. Eq. 5.27 can
be understood as a local isoparametric mapping from the standard triangle
to the geometric (physical) space. By virtue of the interpolation Eq. 5.27,
the displacement field Eq. 5.7 is interpolated analogously,

uh(�
1, �2) =

12�

I=1

N I(�1, �2) uI . (5.28)

The evaluation of the limit surface of an irregular triangle is somewhat more
involved. First, assume that only one node per irregular triangle is irregular.
Any triangulated surface easily fulfills this assumption if a quadrisection is
performed globally. Without loss of generality, it is assumed in the following
that any irregular triangle and its patch is locally numbered as illustrated
in Fig. 5.3 (left). Note that after a subdivision step, triangles 1 to 3 of
the four regions of the subdivided irregular triangle are accessible to direct
evaluation since their patches are regular. The same procedure can be

75

• Limit of infinitely many subdivisions 
(J. Stam, 1966):

• NI: quartic spline functions



Wavelength and stiffness matching

Wrinkling equation:

5

EQUATIONS OF MOTIONS

To identify the equilibrium configurations, we assume
that the film exhibits an overdamped relaxation dynam-
ics. Then, the equations of motion follow by functional
variation of the elastic energy (33) with respect to the
displacement field u,

⇢

⌧0
@
t

u = ��E
�u

(34)

where ⇢ is the constant surface mass density of the film
and ⌧0 the damping-time scale. The relaxation dynam-
ics (34) can be written in the equivalent form

µ@
t

u = ��Ē
�u

(35a)

where the coe�cient

µ =
⇢(1� ⌫2)

⌧0Ef

(35b)

is the inverse relaxation speed. Calculating the functional
derivative �Ē/�u gives
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u = �04u� �242u� au� bu2 � cu3 + (36)
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i
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h
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i

Since we are only interested in the steady-state solutions,
the exact value of µ is not relevant for our analysis. It
is convenient to rewrite Eq. (36) in dimensionless form
by measuring length in units of the film thickness h and
time in units of ⌧

h

= µh. Introducing the dimensionless
curvature parameter

 = h/R (37)

Eq. (36) reduces to
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with rescaled dimensionless parameters
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Note that the covariant derivatives r and 4 in Eq. (38)
are now also defined with respect to the rescaled dimen-
sionless sphere of radius �1 = R/h. Given the dimen-
sionless parameters in Eq. (39), the corresponding values
in physical units are recovered through the transforma-
tions

u ! hu, R ! h/, t ! µht

�0 ! h�0, �2 ! h3�2

a ! a/h, b ! b/h2, c ! c/h3

�1 ! �1, �2 ! �2/h (40)

As evident from Eq. (39), the model is specified
through dimensionless parameters

(, �̄, E
s

/E
f

, ⌫, ã, ã2, c̃) (41)

PARAMETER DETERMINATION

The parameters (h,R, ⌫, E
s

, E
f

) can be directly mea-
sured for our experimental system. To determine the
remaining parameters (�̄, ã, ã2, c̃), we proceed as follows:

1. Linear stability analysis will enable us to relate �0
at the onset of wrinkling with the wavelength �,
which yields a relation between the critical buckling
strain �̄ and the ratio E

s

/E
f

.

2. The value of the substrate parameter ã can be es-
timated from known result for the critical bulking
stress in planar elasticity theory [5]. Below, we will
extend the classical derivation to the weakly curved
case to confirm that our model predictions agree
with recent results by Cai et al. [6]

3. By means of nonlinear stability analysis and com-
parison with analytical results for the standard
Swift-Hohenberg equation, we will express the pa-
rameter ã2 in terms of c, leaving c̃ as the only re-
maining fit parameter. We estimate c̃ by comparing
our numerical simulations with the experimentally
measured surface morphologies.

Critical stress �̄ and ã

We estimate �̄ by comparing our e↵ective theory with
known results for the full elastic equations in the pla-
nar limit case R ! 1. Letting  ! 0 and linearizing
Eq. (38) for a small perturbation "eikx of the unbuckled
homogeneous solution, one finds the dominant unstable
wave-mode
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Bifurcation condition:
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Equating �
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with the known wrinkling wavelength �
el

of a planar elastic film-substrate system, which in
units h = 1 is given by [5]
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The sign indicates a compressive strain, which in our
terminology is negative. From Eq. (39) with  ! 0, we
find the planar estimate
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A correction due to curvature will be discussed below.
Critical stress. The strain �̄

p

can be associated with
the critical stress �

c

at the wrinkling threshold. As ex-
pressed by Eq. (25c), our system is in a state of equi-
biaxial strains �̄ implying that, in a locally orthogonal
coordinate frame, the in-plane elasticity tensor reduces
to ✏11 = ✏22 = ✏, ✏12 = ✏21 = 0. The usual stress-strain
relationship of a Hookean material then reads [7]
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Assuming a standard linear relation between stress and
strain, we expect

�
c

= k
�

E
f

1� ⌫
�̄
p

(46)

with some constant prefactor k
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. Inserting Eq. (45), we
obtain
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which for k
�

= 3/2 agrees with the known critical stress
of elastic wrinkling analysis [5]
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Estimation of ã near the critical value �
c

. In the
planar limit  ! 0, Eq. (38) exhibits the bifurcation
from a uniform state to nontrivial pattern formation only
if a < a
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, where
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At the wrinkling onset, corresponding to a = a
c

, the film
stress � equals the critical stress �

c

so that ⌃
e

= 0. For
the planar case, Eq. (49) thus determines the substrate
parameter ã as
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Curvature-dependence of the critical strain �̄

Recent simulations of the full coupled elasticity equa-
tions [8] and experiments with polymer colloids [9] report
wave-length reduction of pattern on curved substrates
compared with the planar case. It is therefore interest-
ing to study how the critical strain �̄ < 0 depends on the
curvature parameter  = h/R in our model.
We first note that, according to Eq. (40), the absolute

value |�0| increases for large curvatures with a leading
order correction / 2. Equation (42b) then implies that
the wavelength �

c

decreases with increasing curvature.
Unfortunately, for the range of parameters realized in
our experiments this correction is below the detection
threshold. Notwithstanding, it is instructive to compare
our model predictions with recent results of Cai et al. [6].
Similar to the planar case, cf. Eq. (49), the wrinkling

bifurcation occurs when
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Recalling that ⌃
e

= 0 at the transition point and using
the the above result for ã, we can solve Eq. (51) for the
critical strain �̄. Using Eq. (39) we then obtain for �0
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which reduces to Eq. (44) in the planar case ( = 0). For
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where �̄
p

is the critical buckling strain for the planar case,
given in Eq. (45). For E

f

/E
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> 1, the first term in the
bracket dominates over the second. In this case, one finds
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This asymptotic scaling behavior in  is similar to the
results of Cai et al. [6], although the numerical prefactors
and the dependence on the Poisson ratio ⌫ di↵er.
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A correction due to curvature will be discussed below.
Critical stress. The strain �̄
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can be associated with
the critical stress �
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at the wrinkling threshold. As ex-
pressed by Eq. (25c), our system is in a state of equi-
biaxial strains �̄ implying that, in a locally orthogonal
coordinate frame, the in-plane elasticity tensor reduces
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= 3/2 agrees with the known critical stress
of elastic wrinkling analysis [5]
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At the wrinkling onset, corresponding to a = a
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Curvature-dependence of the critical strain �̄

Recent simulations of the full coupled elasticity equa-
tions [8] and experiments with polymer colloids [9] report
wave-length reduction of pattern on curved substrates
compared with the planar case. It is therefore interest-
ing to study how the critical strain �̄ < 0 depends on the
curvature parameter  = h/R in our model.
We first note that, according to Eq. (40), the absolute

value |�0| increases for large curvatures with a leading
order correction / 2. Equation (42b) then implies that
the wavelength �
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decreases with increasing curvature.
Unfortunately, for the range of parameters realized in
our experiments this correction is below the detection
threshold. Notwithstanding, it is instructive to compare
our model predictions with recent results of Cai et al. [6].
Similar to the planar case, cf. Eq. (49), the wrinkling
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where �̄
p

is the critical buckling strain for the planar case,
given in Eq. (45). For E
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> 1, the first term in the
bracket dominates over the second. In this case, one finds
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This asymptotic scaling behavior in  is similar to the
results of Cai et al. [6], although the numerical prefactors
and the dependence on the Poisson ratio ⌫ di↵er.
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Figure 1 | Macroscopic and microscopic wrinkling morphologies of sti� thin films on spherically curved soft substrates. a–c, Theoretical predictions
based on numerical steady-state solutions of equation (1). Colour red (blue) signals inward (outward) wrinkles. Simulation parameters: (a) �0 =�0.029,
a=0.00162, c=0.0025; (b) �0 =�0.04, a=�1.26⇥ 10�6, c=0.002; (c) �0 =�0.02, a= 1.49⇥ 10�4, c=0.0025 (see Table 1). d–f, Experimentally
observed patterns confirm the transition from hexagonal (d) to labyrinth-like wrinkles (f) via a bistable region (e) when the radius-to-thickness ratio R/h
(see Fig. 2) is increased. Scale bars, 10 mm. Parameters: Ef =2,100 kPa, R=20 mm, ⌫ =0.5 and (d) Es =230 kPa, h=0.630 mm; (e) Es =29 kPa,
h=0.14 mm; (f) Es =63 kPa, h=0.10 mm. g–i, Oxide layers on microscopic PDMS hemispheres exhibit a similar transition from hexagonal to labyrinth
patterns when the excess film stress is increased through changes in the ambient ethanol concentration (indicated in per cent). Scale bars, 250 µm.
Micrographs courtesy of D. Breid and A. Crosby28.
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Figure 2 | Notation and experimental system. a, Schematic of a curved
thin film adhering to a soft spherical substrate of outer radius R. b, The film
(thickness h) is driven towards a wrinkling instability by the compressive
film stress � , leading to a wrinkling pattern with wavelength � and radial
displacement u. c, The experimental system consists of two merged
hemispherical caps. An air channel allows one to tune the film stress �

through the pressure di�erence 1p=pe �pi.

computational wrinkling studies26,27, their nonlinear tensorial
structure o�ers limited insight beyond linear stability analysis.
We found, however, that substantial analytical simplifications are
possible when a sti� film (Young modulus Ef) is adhered to a soft
substrate with Young modulus Es ⌧Ef.

As relevant to our experiments, which are described in detail
below, we consider a spherical geometry with radius R/h� 1 and

assume that film and substrate have the same Poisson ratio ⌫. The
generalization to non-spherical surfaces is obtained by replacing
the metric tensor appropriately (Supplementary Information).
Continuity across the film–substrate interface favours deformations
that are dominated by the radial displacement u (Fig. 2; from here
onwards all lengths are normalized by h). Neglecting secondary
lateral displacements, one can systematically expand the strain
energy, which contains the original Koiter shell energy density as
well as additional substrate coupling and overstress contributions,
in terms of the covariant surface derivative ru and powers of u
(Supplementary Information). Functional variation of the elastic
energy with respect to u then yields a nonlinear partial di�erential
equation for the wrinkled equilibrium state of the film. Assuming
overdamped relaxation dynamics, one thus obtains the following
GSH equation (Supplementary Information)

@t u = �01u��21
2u�au�bu2 �cu3

+�1
⇥
(ru)2 +2u1u

⇤+�2
⇥
u(ru)2 +u21u

⇤
(1)

Here, 1 denotes the Laplace–Beltrami operator, involving the
surface metric tensor of the sphere and Christo�el symbols of
the second kind, and 12 is the surface biharmonic operator35.
The (�0, �2) terms describe stress and bending, the (a, b, c)
terms comprise local film–substrate interactions and stretching
contributions, and the (�1, �2) terms account for higher-order
stretching forces. For �1 = �2 = 0, equation (1) reduces to the
standard Swift–Hohenberg equation, as originally derived in
the context of Rayleigh–Bénard convection10,36. The additional
(�1, �2) terms will prove crucial below when matching theory
and experiments. The generalization of equation (1) for arbitrary
surfaces is given in Supplementary Equation (34).

The detailed derivation (Supplementary Information), combined
with systematic asymptotic analysis of the planar limit R/h!1,
allows us to express the coe�cients in equation (1) in terms of
the standard material parameters: Poisson ratio of the film ⌫,
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FIG. 2: Notation and experimental system. a,
Schematic of a curved thin film adhering to a soft spheri-
cal substrate of outer radius R. b, The film (thickness h) is
driven towards a wrinkling instability by the compressive film
stress �, leading to wrinkling pattern with wavelength � and
radial displacement u. c, The experimental system consists
of two merged hemispherical caps. An air channel allows to
tune the film stress � via the pressure di↵erence �p = pe�pi.

dard Swift-Hohenberg equation, as originally derived in
the context of Rayleigh-Bénard convection [10, 34]. The
additional (�1,�2)-terms will prove crucial below when
matching theory and experiments.

The detailed derivation (Supplementary Information),
combined with systematic asymptotic analysis of the pla-
nar limit R/h ! 1, allows us to express the coe�-
cients in Eq. (1) in terms of the standard material pa-
rameters: Poisson ratio of the film ⌫, e↵ective curva-
ture  = h/R, Young ratio ⌘ = 3Es/Ef , and excess
stress ⌃e = (�/�c) � 1 (Table I). The theory contains
only a single fitting parameter, c1, related to the cubic
stretching force term cu3. Equation (1) predicts that
the unbuckled solution u = 0 is stable for negative ex-
cess stresses ⌃e < 0, whereas wrinkling occurs for ⌃e � 0.
Linear stability analysis at ⌃e = 0 and  = 0 reproduces
the classical [35] pattern wavelength relation for planar
wrinkling �/h = 2⇡⌘�1/3 (Supplementary Information).

Numerical simulation of Eq. (1) is nontrivial due to the
metric dependence of the biharmonic operator 42 [33].
To compute the stationary wrinkling patterns (Fig. 1a-c)
predicted by Eq. (1), we implemented a C1-continuous
finite-element algorithms specifically designed for covari-
ant fourth-order problems (Methods). A main benefit of
Eq. (1), however, is that it enables analytical prediction
of the various pattern formation regimes.

Pattern selection

Pattern selection in the wrinkling regime ⌃e � 0 is a
nonlinear process and, therefore, cannot be inferred from
linear stability analysis. Numerical parameter scans of
Eq. (1) yield a variety of qualitatively di↵erent station-
ary states that can be classified as representatives of a
hexagonal phase (Fig. 1a), labyrinth phase (Fig. 1c), or
intermediate coexistence phase (Fig. 1b). Qualitatively,
the transition from hexagons to labyrinths can be under-
stood through a symmetry argument: The (b,�1)-terms
in Eq. (1) break the radial reflection invariance of its so-
lutions under the transformation u ! �u. Since b and
�1 are controlled by  = h/R (Table I), we expect a
curvature-induced SB transition at some critical value
of . Furthermore, recalling that the inclusion of similar
SB terms causes a transition from labyrinths to hexago-
nal patterns in the classical SH model [34], it is plausible
to expect a hexagonal phase at large curvatures  and
labyrinths at smaller values of  in our system.
To obtain a quantitative prediction for the phase

boundaries, we approximate Eq. (1) through a
standard SH equation and make use of estab-
lished results from nonlinear stability analysis [36].
Assuming plane-wave solutions with amplitude A
and wavevector k, the �1-term exerts an aver-
age force �1h(ru)2 + 2u4ui� = ��1A2k2/2 per wave-
length �. One may therefore approximate the �1-term
by an e↵ective quadratic force ��1k2u2, and similarly
the �2-term by an e↵ective cubic force �2k2u3/2 (Supple-
mentary Information). Inserting for k the most unstable
mode, k⇤ =

p
|�0|/(2�2), Eq. (1) can be approximated

by the standard SH equation
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TABLE I: List of parameters for Eq. (1) in units h = 1, with
⌘ = 3Es/Ef , �2 = 1/12, ⌃e = (�/�c)� 1 and  = h/R. The
only remaining fitting parameter of the model is c1.
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FIG. 2: Notation and experimental system. a,
Schematic of a curved thin film adhering to a soft spheri-
cal substrate of outer radius R. b, The film (thickness h) is
driven towards a wrinkling instability by the compressive film
stress �, leading to wrinkling pattern with wavelength � and
radial displacement u. c, The experimental system consists
of two merged hemispherical caps. An air channel allows to
tune the film stress � via the pressure di↵erence �p = pe�pi.

dard Swift-Hohenberg equation, as originally derived in
the context of Rayleigh-Bénard convection [10, 34]. The
additional (�1,�2)-terms will prove crucial below when
matching theory and experiments.

The detailed derivation (Supplementary Information),
combined with systematic asymptotic analysis of the pla-
nar limit R/h ! 1, allows us to express the coe�-
cients in Eq. (1) in terms of the standard material pa-
rameters: Poisson ratio of the film ⌫, e↵ective curva-
ture  = h/R, Young ratio ⌘ = 3Es/Ef , and excess
stress ⌃e = (�/�c) � 1 (Table I). The theory contains
only a single fitting parameter, c1, related to the cubic
stretching force term cu3. Equation (1) predicts that
the unbuckled solution u = 0 is stable for negative ex-
cess stresses ⌃e < 0, whereas wrinkling occurs for ⌃e � 0.
Linear stability analysis at ⌃e = 0 and  = 0 reproduces
the classical [35] pattern wavelength relation for planar
wrinkling �/h = 2⇡⌘�1/3 (Supplementary Information).

Numerical simulation of Eq. (1) is nontrivial due to the
metric dependence of the biharmonic operator 42 [33].
To compute the stationary wrinkling patterns (Fig. 1a-c)
predicted by Eq. (1), we implemented a C1-continuous
finite-element algorithms specifically designed for covari-
ant fourth-order problems (Methods). A main benefit of
Eq. (1), however, is that it enables analytical prediction
of the various pattern formation regimes.

Pattern selection

Pattern selection in the wrinkling regime ⌃e � 0 is a
nonlinear process and, therefore, cannot be inferred from
linear stability analysis. Numerical parameter scans of
Eq. (1) yield a variety of qualitatively di↵erent station-
ary states that can be classified as representatives of a
hexagonal phase (Fig. 1a), labyrinth phase (Fig. 1c), or
intermediate coexistence phase (Fig. 1b). Qualitatively,
the transition from hexagons to labyrinths can be under-
stood through a symmetry argument: The (b,�1)-terms
in Eq. (1) break the radial reflection invariance of its so-
lutions under the transformation u ! �u. Since b and
�1 are controlled by  = h/R (Table I), we expect a
curvature-induced SB transition at some critical value
of . Furthermore, recalling that the inclusion of similar
SB terms causes a transition from labyrinths to hexago-
nal patterns in the classical SH model [34], it is plausible
to expect a hexagonal phase at large curvatures  and
labyrinths at smaller values of  in our system.
To obtain a quantitative prediction for the phase

boundaries, we approximate Eq. (1) through a
standard SH equation and make use of estab-
lished results from nonlinear stability analysis [36].
Assuming plane-wave solutions with amplitude A
and wavevector k, the �1-term exerts an aver-
age force �1h(ru)2 + 2u4ui� = ��1A2k2/2 per wave-
length �. One may therefore approximate the �1-term
by an e↵ective quadratic force ��1k2u2, and similarly
the �2-term by an e↵ective cubic force �2k2u3/2 (Supple-
mentary Information). Inserting for k the most unstable
mode, k⇤ =
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FIG. 2: Notation and experimental system. a,
Schematic of a curved thin film adhering to a soft spheri-
cal substrate of outer radius R. b, The film (thickness h) is
driven towards a wrinkling instability by the compressive film
stress �, leading to wrinkling pattern with wavelength � and
radial displacement u. c, The experimental system consists
of two merged hemispherical caps. An air channel allows to
tune the film stress � via the pressure di↵erence �p = pe�pi.

dard Swift-Hohenberg equation, as originally derived in
the context of Rayleigh-Bénard convection [10, 34]. The
additional (�1,�2)-terms will prove crucial below when
matching theory and experiments.

The detailed derivation (Supplementary Information),
combined with systematic asymptotic analysis of the pla-
nar limit R/h ! 1, allows us to express the coe�-
cients in Eq. (1) in terms of the standard material pa-
rameters: Poisson ratio of the film ⌫, e↵ective curva-
ture  = h/R, Young ratio ⌘ = 3Es/Ef , and excess
stress ⌃e = (�/�c) � 1 (Table I). The theory contains
only a single fitting parameter, c1, related to the cubic
stretching force term cu3. Equation (1) predicts that
the unbuckled solution u = 0 is stable for negative ex-
cess stresses ⌃e < 0, whereas wrinkling occurs for ⌃e � 0.
Linear stability analysis at ⌃e = 0 and  = 0 reproduces
the classical [35] pattern wavelength relation for planar
wrinkling �/h = 2⇡⌘�1/3 (Supplementary Information).

Numerical simulation of Eq. (1) is nontrivial due to the
metric dependence of the biharmonic operator 42 [33].
To compute the stationary wrinkling patterns (Fig. 1a-c)
predicted by Eq. (1), we implemented a C1-continuous
finite-element algorithms specifically designed for covari-
ant fourth-order problems (Methods). A main benefit of
Eq. (1), however, is that it enables analytical prediction
of the various pattern formation regimes.

Pattern selection

Pattern selection in the wrinkling regime ⌃e � 0 is a
nonlinear process and, therefore, cannot be inferred from
linear stability analysis. Numerical parameter scans of
Eq. (1) yield a variety of qualitatively di↵erent station-
ary states that can be classified as representatives of a
hexagonal phase (Fig. 1a), labyrinth phase (Fig. 1c), or
intermediate coexistence phase (Fig. 1b). Qualitatively,
the transition from hexagons to labyrinths can be under-
stood through a symmetry argument: The (b,�1)-terms
in Eq. (1) break the radial reflection invariance of its so-
lutions under the transformation u ! �u. Since b and
�1 are controlled by  = h/R (Table I), we expect a
curvature-induced SB transition at some critical value
of . Furthermore, recalling that the inclusion of similar
SB terms causes a transition from labyrinths to hexago-
nal patterns in the classical SH model [34], it is plausible
to expect a hexagonal phase at large curvatures  and
labyrinths at smaller values of  in our system.
To obtain a quantitative prediction for the phase

boundaries, we approximate Eq. (1) through a
standard SH equation and make use of estab-
lished results from nonlinear stability analysis [36].
Assuming plane-wave solutions with amplitude A
and wavevector k, the �1-term exerts an aver-
age force �1h(ru)2 + 2u4ui� = ��1A2k2/2 per wave-
length �. One may therefore approximate the �1-term
by an e↵ective quadratic force ��1k2u2, and similarly
the �2-term by an e↵ective cubic force �2k2u3/2 (Supple-
mentary Information). Inserting for k the most unstable
mode, k⇤ =

p
|�0|/(2�2), Eq. (1) can be approximated

by the standard SH equation
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of two merged hemispherical caps. An air channel allows to
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nar limit R/h ! 1, allows us to express the coe�-
cients in Eq. (1) in terms of the standard material pa-
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ture  = h/R, Young ratio ⌘ = 3Es/Ef , and excess
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only a single fitting parameter, c1, related to the cubic
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the unbuckled solution u = 0 is stable for negative ex-
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Linear stability analysis at ⌃e = 0 and  = 0 reproduces
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predicted by Eq. (1), we implemented a C1-continuous
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ant fourth-order problems (Methods). A main benefit of
Eq. (1), however, is that it enables analytical prediction
of the various pattern formation regimes.

Pattern selection

Pattern selection in the wrinkling regime ⌃e � 0 is a
nonlinear process and, therefore, cannot be inferred from
linear stability analysis. Numerical parameter scans of
Eq. (1) yield a variety of qualitatively di↵erent station-
ary states that can be classified as representatives of a
hexagonal phase (Fig. 1a), labyrinth phase (Fig. 1c), or
intermediate coexistence phase (Fig. 1b). Qualitatively,
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of . Furthermore, recalling that the inclusion of similar
SB terms causes a transition from labyrinths to hexago-
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to expect a hexagonal phase at large curvatures  and
labyrinths at smaller values of  in our system.
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TABLE I: List of parameters for Eqs. (38) and (60) as ob-
tained by systematic asymptotic matching to classical elas-
tic wrinkling theory, with ⌘ = 3Es/Ef , �2 = 1/12, ⌃e =
(�/�c)� 1, and  = h/R where h is the film thickness and R
the radius (see Fig. 2 of Main Text). We substituted ã and c̃
by Eqs. (50) and (73). Note that c1 is the only remaining fit
parameter of the model.

Nonlinear behavior above onset

Having determined estimates for the parameters (�̄, ã)
by analyzing the onset of wrinkling, the two remaining
unknown parameters are (ã2, c̃). Aiming to further re-
duce the number of free parameters, we now turn to the
regime beyond the wrinkling threshold, where patterns
are selected by nonlinear e↵ects. To this end, we first re-
duce the generalized Swift-Hohenbergy equation (38) to
a standard Swift-Hohenberg (SH) equation by approxi-
mating mixed �1,2-terms in Eq. (38) that contain both u
andru through e↵ective expressions that only contain u.
Assuming a typical relation between pattern amplitude
and excess film stress ⌃

e

= (�/�
c

) � 1, we can then ex-
ploit existing results for the stability of patterns in the
SH equation to predict the morphological phase diagram
of the wrinkling patterns in our experimental system.

Swift-Hohenberg approximation. To approximate
Eq. (38) by a standard SH equation, we recall that �0
and �2 select the dominant (most unstable) wave number
vector k

c

= ±
p

6|�0|, see Eq. (42a). Considering the
limit  ! 0 and a plane wave solution of the form

u = A cos(k
c

x) (55)

the �1-term in Eq. (38) exerts an average force per wave-
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Comparing Eq. (56) with the average force exerted by a
quadratic force f = au2 for the wave solution (55),

hau2i
�

=
aA2

2
(58)

we can approximate the �1-term by an ‘equivalent’ aver-
age force term of the form
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h
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2
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u2 (59a)

Similarly, the average force due to the �2-term can be
approximated by a cubic force. Since the �2-term is anti-
symmetric in u, the corresponding mean force is obtained
by averaging over the interval [�/4, 3�/4], yielding
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With these approximations, Eq. (38) reduces to the SH
equation
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To facilitate direct comparison with results in the lit-
erature [10], it is convenient to rewrite Eq. (60) in the
rescaled normal form
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with a
c

given by Eq. (49).
Excess film stress. Our model accounts for the ex-

cess film stress ⌃
e

= (�/�
c

) � 1 through the contribu-
tion ã2⌃e

that appears in the coe�cient a of the linear
force, see Eq. (39). This specific functional relationship
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Figure 1 | Macroscopic and microscopic wrinkling morphologies of sti� thin films on spherically curved soft substrates. a–c, Theoretical predictions
based on numerical steady-state solutions of equation (1). Colour red (blue) signals inward (outward) wrinkles. Simulation parameters: (a) �0 =�0.029,
a=0.00162, c=0.0025; (b) �0 =�0.04, a=�1.26⇥ 10�6, c=0.002; (c) �0 =�0.02, a= 1.49⇥ 10�4, c=0.0025 (see Table 1). d–f, Experimentally
observed patterns confirm the transition from hexagonal (d) to labyrinth-like wrinkles (f) via a bistable region (e) when the radius-to-thickness ratio R/h
(see Fig. 2) is increased. Scale bars, 10 mm. Parameters: Ef =2,100 kPa, R=20 mm, ⌫ =0.5 and (d) Es =230 kPa, h=0.630 mm; (e) Es =29 kPa,
h=0.14 mm; (f) Es =63 kPa, h=0.10 mm. g–i, Oxide layers on microscopic PDMS hemispheres exhibit a similar transition from hexagonal to labyrinth
patterns when the excess film stress is increased through changes in the ambient ethanol concentration (indicated in per cent). Scale bars, 250 µm.
Micrographs courtesy of D. Breid and A. Crosby28.
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Figure 2 | Notation and experimental system. a, Schematic of a curved
thin film adhering to a soft spherical substrate of outer radius R. b, The film
(thickness h) is driven towards a wrinkling instability by the compressive
film stress � , leading to a wrinkling pattern with wavelength � and radial
displacement u. c, The experimental system consists of two merged
hemispherical caps. An air channel allows one to tune the film stress �

through the pressure di�erence 1p=pe �pi.

computational wrinkling studies26,27, their nonlinear tensorial
structure o�ers limited insight beyond linear stability analysis.
We found, however, that substantial analytical simplifications are
possible when a sti� film (Young modulus Ef) is adhered to a soft
substrate with Young modulus Es ⌧Ef.

As relevant to our experiments, which are described in detail
below, we consider a spherical geometry with radius R/h� 1 and

assume that film and substrate have the same Poisson ratio ⌫. The
generalization to non-spherical surfaces is obtained by replacing
the metric tensor appropriately (Supplementary Information).
Continuity across the film–substrate interface favours deformations
that are dominated by the radial displacement u (Fig. 2; from here
onwards all lengths are normalized by h). Neglecting secondary
lateral displacements, one can systematically expand the strain
energy, which contains the original Koiter shell energy density as
well as additional substrate coupling and overstress contributions,
in terms of the covariant surface derivative ru and powers of u
(Supplementary Information). Functional variation of the elastic
energy with respect to u then yields a nonlinear partial di�erential
equation for the wrinkled equilibrium state of the film. Assuming
overdamped relaxation dynamics, one thus obtains the following
GSH equation (Supplementary Information)

@t u = �01u��21
2u�au�bu2 �cu3

+�1
⇥
(ru)2 +2u1u

⇤+�2
⇥
u(ru)2 +u21u

⇤
(1)

Here, 1 denotes the Laplace–Beltrami operator, involving the
surface metric tensor of the sphere and Christo�el symbols of
the second kind, and 12 is the surface biharmonic operator35.
The (�0, �2) terms describe stress and bending, the (a, b, c)
terms comprise local film–substrate interactions and stretching
contributions, and the (�1, �2) terms account for higher-order
stretching forces. For �1 = �2 = 0, equation (1) reduces to the
standard Swift–Hohenberg equation, as originally derived in
the context of Rayleigh–Bénard convection10,36. The additional
(�1, �2) terms will prove crucial below when matching theory
and experiments. The generalization of equation (1) for arbitrary
surfaces is given in Supplementary Equation (34).

The detailed derivation (Supplementary Information), combined
with systematic asymptotic analysis of the planar limit R/h!1,
allows us to express the coe�cients in equation (1) in terms of
the standard material parameters: Poisson ratio of the film ⌫,
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Understanding curvature-
induced pattern transition

• Approximate 𝛤1 and 𝛤2  terms by average quadratic and cubic forces.
• We obtain a standard Swift-Hohenberg equation for wrinkling:

• (Known) nonlinear stability analysis predicts phase transition lines:

4

where � = u/u⇤, u⇤ = |�0|/
p

(c/3) + �2|�0|, A = 3a/�2
0 ,

and B = u⇤ [(b/3) + 2|�0|�1] /�2
0 . Nonlinear stability

analysis of Eq. (2) yields the critical phase transition
curves as functions of A and B [36]. Note that the coe�-
cients in Eq. (2) can be directly traced back to geometric
and material parameters, whereas in many other pattern
formation processes SH-type equations have been applied
only in a purely phenomenologically manner [6]. In terms
of the original system parameters, one finds the stability
criteria (Supplementary Information)

Hexagonal phase: �2/(20c21) < ⌃e < 2/c21

Bistable phase: 2/c21 < ⌃e < 42/c21 (3)

Labyrinth phase: 42/c21 < ⌃e

where the parameter c1 sets the strength of the cubic
stretching force (Table I). In the bistable coexistence
phase, both hexagon and labyrinth solutions are stable,
suggesting a strong dependence on initial conditions in
this regime (Fig. 4).

Equation (3) confirms our qualitative symmetry argu-
ment and implies, moreover, that the pattern formation
transitions can be controlled not only by curvature, but
also through the excess film stress ⌃e, in agreement with
recent experimental results [27] (Fig. 1g-i).

Comparison with experiments

We test the theoretical predictions, obtained from
Eqs. (1)–(3), by studying the wrinkling of centimeter-
sized coated PDMS elastomer hemispheres (Methods).
In our experiments, wrinkling is controlled by the
swelling of the film during fabrication and by manual
depressurization after fabrication (Fig. 2a,c). The dis-
placement field u, from which the excess film stress ⌃e

can be estimated via amplitude measurements [30], is ob-
tained from 3D surface scans (Methods).

The experimental data confirm quantitatively the the-
oretically predicted curvature-induced phase transitions
from hexagons to labyrinths (Figs. 1 and 3). At high val-
ues of curvature  = h/R, we find the hexagonal phase,
characterized by localized spherical depression that are
typically surrounded by 6 neighbours (Fig. 1a,d), al-
though occasional topological defects with 5 or 7 neigh-
bours exist as required by Euler’s polyhedral theo-
rem [37]. As predicted by Eq. (1), experimentally ob-
served hexagons always buckle inwards. For intermedi-
ate values of , the experiments further confirm coex-
isting domains of hexagonal and labyrinth-like patterns
(Fig. 1b,e). In our simulations of Eq. (1), we find that the
energy of such hybrid patterns remains constant asymp-
totically, suggesting that they are not transient but corre-
spond to stable local energy minima. When the curvature
is decreased,  ! 0, at constant stress ⌃e, the experimen-
tal system transitions into the labyrinth phase (Fig. 1c,f),
characterized by a network of connected ridges and ex-
tended but disconnected valleys (Fig. 1f). Equation (1)
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FIG. 3: Phase diagram of wrinkling morphologies. Ex-
perimental data points for hexagonal (blue), bistable (yel-
low) and labyrinth (red) patterns are shown for di↵erent val-
ues of curvature radius R/h = �1 and excess film stress
⌃e. Symbols indicate the elastic moduli ratio ⌘ = 3Es/Ef

(⌅ : ⌘ = 0.019, • : ⌘ = 0.036, | : ⌘ = 0.041, H : ⌘ = 0.055,
⌥ : ⌘ = 0.09, N : ⌘ = 0.328). The data suggest that
phase boundaries are independent of ⌘ in the experimentally
tested range. Only the largest vertical error bars are shown
(standard deviation of 12 amplitude measurements; Meth-
ods). Horizontal error bars are smaller than the symbol size.
Solid lines are theoretically predicted phase boundaries, ob-
tained from Eq. (3) with parameter c1 = 0.0188 (Table I).

shows that this ridge-valley asymmetry is due to the
small but non-vanishing SB e↵ect of curvature.
Moreover, in agreement with previous micro-scale

experiments [27] (Fig. 1g-i), Eqs. (1) and (3) imply
that the phase transition from hexagons to labyrinths
can also be triggered by increasing the excess film
stress ⌃e = (�/�c)� 1 at constant surface curvature.
The morphological phase diagram constructed from our
macro-scale data confirms this prediction (Fig. 3). In
particular, by fixing just a single fitting parameter c1 =
0.0188±0.0002, the analytical results for the two critical
curves in Eq. (3) are in good quantitative agreement with
the experimental data for a wide range of Young modu-
lus ratios ⌘ = 3Es/Ef (Fig. 3). Strikingly, we find that
the phase boundaries are independent of ⌘ over the range
0.019 < ⌘ < 0.328 realized in our experiments, suggest-
ing that the parameter c1 may be a universal numerical
constant independent of material properties.

Predictions for future experiments

The good agreement between theory and currently
available experimental data encourages additional pre-
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FIG. 2: Notation and experimental system. a,
Schematic of a curved thin film adhering to a soft spheri-
cal substrate of outer radius R. b, The film (thickness h) is
driven towards a wrinkling instability by the compressive film
stress �, leading to wrinkling pattern with wavelength � and
radial displacement u. c, The experimental system consists
of two merged hemispherical caps. An air channel allows to
tune the film stress � via the pressure di↵erence �p = pe�pi.

dard Swift-Hohenberg equation, as originally derived in
the context of Rayleigh-Bénard convection [10, 34]. The
additional (�1,�2)-terms will prove crucial below when
matching theory and experiments.

The detailed derivation (Supplementary Information),
combined with systematic asymptotic analysis of the pla-
nar limit R/h ! 1, allows us to express the coe�-
cients in Eq. (1) in terms of the standard material pa-
rameters: Poisson ratio of the film ⌫, e↵ective curva-
ture  = h/R, Young ratio ⌘ = 3Es/Ef , and excess
stress ⌃e = (�/�c) � 1 (Table I). The theory contains
only a single fitting parameter, c1, related to the cubic
stretching force term cu3. Equation (1) predicts that
the unbuckled solution u = 0 is stable for negative ex-
cess stresses ⌃e < 0, whereas wrinkling occurs for ⌃e � 0.
Linear stability analysis at ⌃e = 0 and  = 0 reproduces
the classical [35] pattern wavelength relation for planar
wrinkling �/h = 2⇡⌘�1/3 (Supplementary Information).

Numerical simulation of Eq. (1) is nontrivial due to the
metric dependence of the biharmonic operator 42 [33].
To compute the stationary wrinkling patterns (Fig. 1a-c)
predicted by Eq. (1), we implemented a C1-continuous
finite-element algorithms specifically designed for covari-
ant fourth-order problems (Methods). A main benefit of
Eq. (1), however, is that it enables analytical prediction
of the various pattern formation regimes.

Pattern selection

Pattern selection in the wrinkling regime ⌃e � 0 is a
nonlinear process and, therefore, cannot be inferred from
linear stability analysis. Numerical parameter scans of
Eq. (1) yield a variety of qualitatively di↵erent station-
ary states that can be classified as representatives of a
hexagonal phase (Fig. 1a), labyrinth phase (Fig. 1c), or
intermediate coexistence phase (Fig. 1b). Qualitatively,
the transition from hexagons to labyrinths can be under-
stood through a symmetry argument: The (b,�1)-terms
in Eq. (1) break the radial reflection invariance of its so-
lutions under the transformation u ! �u. Since b and
�1 are controlled by  = h/R (Table I), we expect a
curvature-induced SB transition at some critical value
of . Furthermore, recalling that the inclusion of similar
SB terms causes a transition from labyrinths to hexago-
nal patterns in the classical SH model [34], it is plausible
to expect a hexagonal phase at large curvatures  and
labyrinths at smaller values of  in our system.
To obtain a quantitative prediction for the phase

boundaries, we approximate Eq. (1) through a
standard SH equation and make use of estab-
lished results from nonlinear stability analysis [36].
Assuming plane-wave solutions with amplitude A
and wavevector k, the �1-term exerts an aver-
age force �1h(ru)2 + 2u4ui� = ��1A2k2/2 per wave-
length �. One may therefore approximate the �1-term
by an e↵ective quadratic force ��1k2u2, and similarly
the �2-term by an e↵ective cubic force �2k2u3/2 (Supple-
mentary Information). Inserting for k the most unstable
mode, k⇤ =

p
|�0|/(2�2), Eq. (1) can be approximated

by the standard SH equation
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TABLE I: List of parameters for Eq. (1) in units h = 1, with
⌘ = 3Es/Ef , �2 = 1/12, ⌃e = (�/�c)� 1 and  = h/R. The
only remaining fitting parameter of the model is c1.
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TABLE I: List of parameters for Eqs. (38) and (60) as ob-
tained by systematic asymptotic matching to classical elas-
tic wrinkling theory, with ⌘ = 3Es/Ef , �2 = 1/12, ⌃e =
(�/�c)� 1, and  = h/R where h is the film thickness and R
the radius (see Fig. 2 of Main Text). We substituted ã and c̃
by Eqs. (50) and (73). Note that c1 is the only remaining fit
parameter of the model.

Nonlinear behavior above onset

Having determined estimates for the parameters (�̄, ã)
by analyzing the onset of wrinkling, the two remaining
unknown parameters are (ã2, c̃). Aiming to further re-
duce the number of free parameters, we now turn to the
regime beyond the wrinkling threshold, where patterns
are selected by nonlinear e↵ects. To this end, we first re-
duce the generalized Swift-Hohenbergy equation (38) to
a standard Swift-Hohenberg (SH) equation by approxi-
mating mixed �1,2-terms in Eq. (38) that contain both u
andru through e↵ective expressions that only contain u.
Assuming a typical relation between pattern amplitude
and excess film stress ⌃

e

= (�/�
c

) � 1, we can then ex-
ploit existing results for the stability of patterns in the
SH equation to predict the morphological phase diagram
of the wrinkling patterns in our experimental system.

Swift-Hohenberg approximation. To approximate
Eq. (38) by a standard SH equation, we recall that �0
and �2 select the dominant (most unstable) wave number
vector k

c

= ±
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6|�0|, see Eq. (42a). Considering the
limit  ! 0 and a plane wave solution of the form
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Comparing Eq. (56) with the average force exerted by a
quadratic force f = au2 for the wave solution (55),
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we can approximate the �1-term by an ‘equivalent’ aver-
age force term of the form
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Similarly, the average force due to the �2-term can be
approximated by a cubic force. Since the �2-term is anti-
symmetric in u, the corresponding mean force is obtained
by averaging over the interval [�/4, 3�/4], yielding
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With these approximations, Eq. (38) reduces to the SH
equation
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To facilitate direct comparison with results in the lit-
erature [10], it is convenient to rewrite Eq. (60) in the
rescaled normal form
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Excess film stress. Our model accounts for the ex-

cess film stress ⌃
e

= (�/�
c

) � 1 through the contribu-
tion ã2⌃e

that appears in the coe�cient a of the linear
force, see Eq. (39). This specific functional relationship
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Figure 1 | Macroscopic and microscopic wrinkling morphologies of sti� thin films on spherically curved soft substrates. a–c, Theoretical predictions
based on numerical steady-state solutions of equation (1). Colour red (blue) signals inward (outward) wrinkles. Simulation parameters: (a) �0 =�0.029,
a=0.00162, c=0.0025; (b) �0 =�0.04, a=�1.26⇥ 10�6, c=0.002; (c) �0 =�0.02, a= 1.49⇥ 10�4, c=0.0025 (see Table 1). d–f, Experimentally
observed patterns confirm the transition from hexagonal (d) to labyrinth-like wrinkles (f) via a bistable region (e) when the radius-to-thickness ratio R/h
(see Fig. 2) is increased. Scale bars, 10 mm. Parameters: Ef =2,100 kPa, R=20 mm, ⌫ =0.5 and (d) Es =230 kPa, h=0.630 mm; (e) Es =29 kPa,
h=0.14 mm; (f) Es =63 kPa, h=0.10 mm. g–i, Oxide layers on microscopic PDMS hemispheres exhibit a similar transition from hexagonal to labyrinth
patterns when the excess film stress is increased through changes in the ambient ethanol concentration (indicated in per cent). Scale bars, 250 µm.
Micrographs courtesy of D. Breid and A. Crosby28.
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Figure 2 | Notation and experimental system. a, Schematic of a curved
thin film adhering to a soft spherical substrate of outer radius R. b, The film
(thickness h) is driven towards a wrinkling instability by the compressive
film stress � , leading to a wrinkling pattern with wavelength � and radial
displacement u. c, The experimental system consists of two merged
hemispherical caps. An air channel allows one to tune the film stress �

through the pressure di�erence 1p=pe �pi.

computational wrinkling studies26,27, their nonlinear tensorial
structure o�ers limited insight beyond linear stability analysis.
We found, however, that substantial analytical simplifications are
possible when a sti� film (Young modulus Ef) is adhered to a soft
substrate with Young modulus Es ⌧Ef.

As relevant to our experiments, which are described in detail
below, we consider a spherical geometry with radius R/h� 1 and

assume that film and substrate have the same Poisson ratio ⌫. The
generalization to non-spherical surfaces is obtained by replacing
the metric tensor appropriately (Supplementary Information).
Continuity across the film–substrate interface favours deformations
that are dominated by the radial displacement u (Fig. 2; from here
onwards all lengths are normalized by h). Neglecting secondary
lateral displacements, one can systematically expand the strain
energy, which contains the original Koiter shell energy density as
well as additional substrate coupling and overstress contributions,
in terms of the covariant surface derivative ru and powers of u
(Supplementary Information). Functional variation of the elastic
energy with respect to u then yields a nonlinear partial di�erential
equation for the wrinkled equilibrium state of the film. Assuming
overdamped relaxation dynamics, one thus obtains the following
GSH equation (Supplementary Information)

@t u = �01u��21
2u�au�bu2 �cu3

+�1
⇥
(ru)2 +2u1u

⇤+�2
⇥
u(ru)2 +u21u

⇤
(1)

Here, 1 denotes the Laplace–Beltrami operator, involving the
surface metric tensor of the sphere and Christo�el symbols of
the second kind, and 12 is the surface biharmonic operator35.
The (�0, �2) terms describe stress and bending, the (a, b, c)
terms comprise local film–substrate interactions and stretching
contributions, and the (�1, �2) terms account for higher-order
stretching forces. For �1 = �2 = 0, equation (1) reduces to the
standard Swift–Hohenberg equation, as originally derived in
the context of Rayleigh–Bénard convection10,36. The additional
(�1, �2) terms will prove crucial below when matching theory
and experiments. The generalization of equation (1) for arbitrary
surfaces is given in Supplementary Equation (34).

The detailed derivation (Supplementary Information), combined
with systematic asymptotic analysis of the planar limit R/h!1,
allows us to express the coe�cients in equation (1) in terms of
the standard material parameters: Poisson ratio of the film ⌫,
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where � = u/u⇤, u⇤ = |�0|/
p

(c/3) + �2|�0|, A = 3a/�2
0 ,

and B = u⇤ [(b/3) + 2|�0|�1] /�2
0 . Nonlinear stability

analysis of Eq. (2) yields the critical phase transition
curves as functions of A and B [36]. Note that the coe�-
cients in Eq. (2) can be directly traced back to geometric
and material parameters, whereas in many other pattern
formation processes SH-type equations have been applied
only in a purely phenomenologically manner [6]. In terms
of the original system parameters, one finds the stability
criteria (Supplementary Information)

Hexagonal phase: �2/(20c21) < ⌃e < 2/c21

Bistable phase: 2/c21 < ⌃e < 42/c21 (3)

Labyrinth phase: 42/c21 < ⌃e

where the parameter c1 sets the strength of the cubic
stretching force (Table I). In the bistable coexistence
phase, both hexagon and labyrinth solutions are stable,
suggesting a strong dependence on initial conditions in
this regime (Fig. 4).

Equation (3) confirms our qualitative symmetry argu-
ment and implies, moreover, that the pattern formation
transitions can be controlled not only by curvature, but
also through the excess film stress ⌃e, in agreement with
recent experimental results [27] (Fig. 1g-i).

Comparison with experiments

We test the theoretical predictions, obtained from
Eqs. (1)–(3), by studying the wrinkling of centimeter-
sized coated PDMS elastomer hemispheres (Methods).
In our experiments, wrinkling is controlled by the
swelling of the film during fabrication and by manual
depressurization after fabrication (Fig. 2a,c). The dis-
placement field u, from which the excess film stress ⌃e

can be estimated via amplitude measurements [30], is ob-
tained from 3D surface scans (Methods).

The experimental data confirm quantitatively the the-
oretically predicted curvature-induced phase transitions
from hexagons to labyrinths (Figs. 1 and 3). At high val-
ues of curvature  = h/R, we find the hexagonal phase,
characterized by localized spherical depression that are
typically surrounded by 6 neighbours (Fig. 1a,d), al-
though occasional topological defects with 5 or 7 neigh-
bours exist as required by Euler’s polyhedral theo-
rem [37]. As predicted by Eq. (1), experimentally ob-
served hexagons always buckle inwards. For intermedi-
ate values of , the experiments further confirm coex-
isting domains of hexagonal and labyrinth-like patterns
(Fig. 1b,e). In our simulations of Eq. (1), we find that the
energy of such hybrid patterns remains constant asymp-
totically, suggesting that they are not transient but corre-
spond to stable local energy minima. When the curvature
is decreased,  ! 0, at constant stress ⌃e, the experimen-
tal system transitions into the labyrinth phase (Fig. 1c,f),
characterized by a network of connected ridges and ex-
tended but disconnected valleys (Fig. 1f). Equation (1)
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FIG. 3: Phase diagram of wrinkling morphologies. Ex-
perimental data points for hexagonal (blue), bistable (yel-
low) and labyrinth (red) patterns are shown for di↵erent val-
ues of curvature radius R/h = �1 and excess film stress
⌃e. Symbols indicate the elastic moduli ratio ⌘ = 3Es/Ef

(⌅ : ⌘ = 0.019, • : ⌘ = 0.036, | : ⌘ = 0.041, H : ⌘ = 0.055,
⌥ : ⌘ = 0.09, N : ⌘ = 0.328). The data suggest that
phase boundaries are independent of ⌘ in the experimentally
tested range. Only the largest vertical error bars are shown
(standard deviation of 12 amplitude measurements; Meth-
ods). Horizontal error bars are smaller than the symbol size.
Solid lines are theoretically predicted phase boundaries, ob-
tained from Eq. (3) with parameter c1 = 0.0188 (Table I).

shows that this ridge-valley asymmetry is due to the
small but non-vanishing SB e↵ect of curvature.
Moreover, in agreement with previous micro-scale

experiments [27] (Fig. 1g-i), Eqs. (1) and (3) imply
that the phase transition from hexagons to labyrinths
can also be triggered by increasing the excess film
stress ⌃e = (�/�c)� 1 at constant surface curvature.
The morphological phase diagram constructed from our
macro-scale data confirms this prediction (Fig. 3). In
particular, by fixing just a single fitting parameter c1 =
0.0188±0.0002, the analytical results for the two critical
curves in Eq. (3) are in good quantitative agreement with
the experimental data for a wide range of Young modu-
lus ratios ⌘ = 3Es/Ef (Fig. 3). Strikingly, we find that
the phase boundaries are independent of ⌘ over the range
0.019 < ⌘ < 0.328 realized in our experiments, suggest-
ing that the parameter c1 may be a universal numerical
constant independent of material properties.

Predictions for future experiments

The good agreement between theory and currently
available experimental data encourages additional pre-

⌘ = 3Es/Ef

⌅ : ⌘ = 0.019
• : ⌘ = 0.036
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FIG. 4: Bifurcation diagram of wrinkling patterns. Stability analysis of Eq. (2) predicts two hysteresis cycles, shown
here for R/h = 40. Solid (dashed) lines correspond to stable (unstable) amplitude solutions, see Eq. (4) and Supplementary
Information. a, The hysteresis path across the bistable phase is realized by first decreasing (red) and subsequently increasing
(blue) the excess stress ⌃e. b, Enlarged view of the second curvature-dependent hysteresis cycle near ⌃e = 0, corresponding to
the highlighted region in (a). Starting from a stable unwrinkled solution at ⌃e < 0, the system switches to a hexagonal state
at ⌃e = 0 (blue path). When decreasing the excess stress again to negative values (red), the hexagons remain stable in the
subcritical region until a critical value ⌃e = ��⌃e is reached. The width �⌃e and height �UH of this hysteresis loop depend on
curvature  = h/R, see Eq. (4).

dictions that ought to be tested in future experiments.
The nonlinear stability analysis of Eq. (2) suggests that,
for su�ciently small overstress ⌃e, the hexagonal phase
continues to exist even for weakly curved substrates [30]
with  ⌧ 1 (Fig. 3). Simulations of Eq. (1) for time-
varying overstress ⌃e(t) confirm that, owing to the pres-
ence of SB terms for  6= 0, hexagonal patterns always
appear first after crossing the wrinkling threshold ⌃e = 0
from below. Once the hexagons have been formed, they
remain stable throughout the bistable phase when the
film stress is slowly increased. A similar reverse e↵ect
is observed when the film stress is slowly decreased in
simulations that start from the labyrinth phase. In this
case, the labyrinths persist throughout the bistable re-
gion. Equation (1) makes it possible to understand such
memory e↵ects analytically (Fig. 4).

Specifically, the above bifurcation analysis of Eqs. (1)–
(3) predicts two hysteresis cycles. The first cycle relates
to the onset of wrinkling at ⌃e = 0 (Fig. 4b), whereas
the second encompasses the bistable phase (Fig. 4a). The
amplitude UH = maxuH �minuH of the hexagonal solu-
tions uH grows according to a square-root law, shifted by
the coe�cient of the SB term in Eq. (2) (Supplementary
Information),

UH =
3

5

"
Bu⇤ +

r
(Bu⇤)2 +

45⌃e

4

#
(4)

where Bu⇤ ' 3/(4c1) to leading order in , with B and
u⇤ as defined in Eq. (2). Equation (4) implies that, for
 > 0, the hexagonal phase is stable subcritically: Upon
reducing the excess film stress from the hexagonal phase,
hexagons remain stable even when the film stress is below
the critical wrinkling stress �c (Fig. 4b). The width of the

subcritical region, �⌃e = 2/(20c21), and the amplitude
at onset, �UH = UH(⌃e = 0) = 9/(10c1), scale with .
The detailed analysis of the second hysteresis cycle

(Fig. 4a) shows that the amplitude UL of the labyrinth
solutions follows a square-root law (Supplementary Infor-
mation). Starting from the labyrinth phase, the system
remains in a labyrinth state when the film stress is low-
ered across the bistable region until one reaches the in-
stability threshold, located at ⌃e ⇡ 1.75 in the depicted
example with R/h = 40 (red path in Fig. 4a). At that
point, the system transitions into a hexagonal state. As
⌃e is increased again, the film maintains the hexagonal
configuration until the stress exceeds the upper instabil-
ity threshold ⌃e ⇡ 7.5 (blue path in Fig. 4a).
The direct verification of the two predicted hystere-

sis cycles poses a substantial experimental challenge, re-
quiring high accuracy in the amplitude measurements
and precise reversible tuning mechanisms for the excess
film stress ⌃e. For instance, the large stress variations
needed to trace out the hysteresis loops with a single sam-
ple cannot be realized with the present depressurization
setup [19]. Some preliminary experimental support for
the hysteresis predictions comes from a recent study [30]
of low-stress films, which pointed out the frequent ap-
pearance of hexagonal patterns when the excess stress is
slowly varied from negative to positive values (see also
Fig. 1g-i). These findings are consistent with the results
of the above bifurcation analysis (Fig. 4a). We hope that
our detailed theoretical predictions will stimulate further
experimental work.
In closing, we showed that a systematically derived

e↵ective field theory provides a comprehensive quanti-
tative description of surface-pattern formation in non-
planar elastic media. The observation of similar pat-

Possibility to stabilize hexagonal patterns 
via hysteresis?

• Nonlinear stability analysis predicts phase transition lines:
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where � = u/u⇤, u⇤ = |�0|/
p

(c/3) + �2|�0|, A = 3a/�2
0 ,

and B = u⇤ [(b/3) + 2|�0|�1] /�2
0 . Nonlinear stability

analysis of Eq. (2) yields the critical phase transition
curves as functions of A and B [36]. Note that the coe�-
cients in Eq. (2) can be directly traced back to geometric
and material parameters, whereas in many other pattern
formation processes SH-type equations have been applied
only in a purely phenomenologically manner [6]. In terms
of the original system parameters, one finds the stability
criteria (Supplementary Information)

Hexagonal phase: �2/(20c21) < ⌃e < 2/c21

Bistable phase: 2/c21 < ⌃e < 42/c21 (3)

Labyrinth phase: 42/c21 < ⌃e

where the parameter c1 sets the strength of the cubic
stretching force (Table I). In the bistable coexistence
phase, both hexagon and labyrinth solutions are stable,
suggesting a strong dependence on initial conditions in
this regime (Fig. 4).

Equation (3) confirms our qualitative symmetry argu-
ment and implies, moreover, that the pattern formation
transitions can be controlled not only by curvature, but
also through the excess film stress ⌃e, in agreement with
recent experimental results [27] (Fig. 1g-i).

Comparison with experiments

We test the theoretical predictions, obtained from
Eqs. (1)–(3), by studying the wrinkling of centimeter-
sized coated PDMS elastomer hemispheres (Methods).
In our experiments, wrinkling is controlled by the
swelling of the film during fabrication and by manual
depressurization after fabrication (Fig. 2a,c). The dis-
placement field u, from which the excess film stress ⌃e

can be estimated via amplitude measurements [30], is ob-
tained from 3D surface scans (Methods).

The experimental data confirm quantitatively the the-
oretically predicted curvature-induced phase transitions
from hexagons to labyrinths (Figs. 1 and 3). At high val-
ues of curvature  = h/R, we find the hexagonal phase,
characterized by localized spherical depression that are
typically surrounded by 6 neighbours (Fig. 1a,d), al-
though occasional topological defects with 5 or 7 neigh-
bours exist as required by Euler’s polyhedral theo-
rem [37]. As predicted by Eq. (1), experimentally ob-
served hexagons always buckle inwards. For intermedi-
ate values of , the experiments further confirm coex-
isting domains of hexagonal and labyrinth-like patterns
(Fig. 1b,e). In our simulations of Eq. (1), we find that the
energy of such hybrid patterns remains constant asymp-
totically, suggesting that they are not transient but corre-
spond to stable local energy minima. When the curvature
is decreased,  ! 0, at constant stress ⌃e, the experimen-
tal system transitions into the labyrinth phase (Fig. 1c,f),
characterized by a network of connected ridges and ex-
tended but disconnected valleys (Fig. 1f). Equation (1)
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FIG. 3: Phase diagram of wrinkling morphologies. Ex-
perimental data points for hexagonal (blue), bistable (yel-
low) and labyrinth (red) patterns are shown for di↵erent val-
ues of curvature radius R/h = �1 and excess film stress
⌃e. Symbols indicate the elastic moduli ratio ⌘ = 3Es/Ef

(⌅ : ⌘ = 0.019, • : ⌘ = 0.036, | : ⌘ = 0.041, H : ⌘ = 0.055,
⌥ : ⌘ = 0.09, N : ⌘ = 0.328). The data suggest that
phase boundaries are independent of ⌘ in the experimentally
tested range. Only the largest vertical error bars are shown
(standard deviation of 12 amplitude measurements; Meth-
ods). Horizontal error bars are smaller than the symbol size.
Solid lines are theoretically predicted phase boundaries, ob-
tained from Eq. (3) with parameter c1 = 0.0188 (Table I).

shows that this ridge-valley asymmetry is due to the
small but non-vanishing SB e↵ect of curvature.
Moreover, in agreement with previous micro-scale

experiments [27] (Fig. 1g-i), Eqs. (1) and (3) imply
that the phase transition from hexagons to labyrinths
can also be triggered by increasing the excess film
stress ⌃e = (�/�c)� 1 at constant surface curvature.
The morphological phase diagram constructed from our
macro-scale data confirms this prediction (Fig. 3). In
particular, by fixing just a single fitting parameter c1 =
0.0188±0.0002, the analytical results for the two critical
curves in Eq. (3) are in good quantitative agreement with
the experimental data for a wide range of Young modu-
lus ratios ⌘ = 3Es/Ef (Fig. 3). Strikingly, we find that
the phase boundaries are independent of ⌘ over the range
0.019 < ⌘ < 0.328 realized in our experiments, suggest-
ing that the parameter c1 may be a universal numerical
constant independent of material properties.

Predictions for future experiments

The good agreement between theory and currently
available experimental data encourages additional pre-
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FIG. 2: Notation and experimental system. a,
Schematic of a curved thin film adhering to a soft spheri-
cal substrate of outer radius R. b, The film (thickness h) is
driven towards a wrinkling instability by the compressive film
stress �, leading to wrinkling pattern with wavelength � and
radial displacement u. c, The experimental system consists
of two merged hemispherical caps. An air channel allows to
tune the film stress � via the pressure di↵erence �p = pe�pi.

dard Swift-Hohenberg equation, as originally derived in
the context of Rayleigh-Bénard convection [10, 34]. The
additional (�1,�2)-terms will prove crucial below when
matching theory and experiments.

The detailed derivation (Supplementary Information),
combined with systematic asymptotic analysis of the pla-
nar limit R/h ! 1, allows us to express the coe�-
cients in Eq. (1) in terms of the standard material pa-
rameters: Poisson ratio of the film ⌫, e↵ective curva-
ture  = h/R, Young ratio ⌘ = 3Es/Ef , and excess
stress ⌃e = (�/�c) � 1 (Table I). The theory contains
only a single fitting parameter, c1, related to the cubic
stretching force term cu3. Equation (1) predicts that
the unbuckled solution u = 0 is stable for negative ex-
cess stresses ⌃e < 0, whereas wrinkling occurs for ⌃e � 0.
Linear stability analysis at ⌃e = 0 and  = 0 reproduces
the classical [35] pattern wavelength relation for planar
wrinkling �/h = 2⇡⌘�1/3 (Supplementary Information).

Numerical simulation of Eq. (1) is nontrivial due to the
metric dependence of the biharmonic operator 42 [33].
To compute the stationary wrinkling patterns (Fig. 1a-c)
predicted by Eq. (1), we implemented a C1-continuous
finite-element algorithms specifically designed for covari-
ant fourth-order problems (Methods). A main benefit of
Eq. (1), however, is that it enables analytical prediction
of the various pattern formation regimes.

Pattern selection

Pattern selection in the wrinkling regime ⌃e � 0 is a
nonlinear process and, therefore, cannot be inferred from
linear stability analysis. Numerical parameter scans of
Eq. (1) yield a variety of qualitatively di↵erent station-
ary states that can be classified as representatives of a
hexagonal phase (Fig. 1a), labyrinth phase (Fig. 1c), or
intermediate coexistence phase (Fig. 1b). Qualitatively,
the transition from hexagons to labyrinths can be under-
stood through a symmetry argument: The (b,�1)-terms
in Eq. (1) break the radial reflection invariance of its so-
lutions under the transformation u ! �u. Since b and
�1 are controlled by  = h/R (Table I), we expect a
curvature-induced SB transition at some critical value
of . Furthermore, recalling that the inclusion of similar
SB terms causes a transition from labyrinths to hexago-
nal patterns in the classical SH model [34], it is plausible
to expect a hexagonal phase at large curvatures  and
labyrinths at smaller values of  in our system.
To obtain a quantitative prediction for the phase

boundaries, we approximate Eq. (1) through a
standard SH equation and make use of estab-
lished results from nonlinear stability analysis [36].
Assuming plane-wave solutions with amplitude A
and wavevector k, the �1-term exerts an aver-
age force �1h(ru)2 + 2u4ui� = ��1A2k2/2 per wave-
length �. One may therefore approximate the �1-term
by an e↵ective quadratic force ��1k2u2, and similarly
the �2-term by an e↵ective cubic force �2k2u3/2 (Supple-
mentary Information). Inserting for k the most unstable
mode, k⇤ =

p
|�0|/(2�2), Eq. (1) can be approximated

by the standard SH equation

@t� = �24��42��A��B�2 � �3 (2)

�0 =
2

3
� 1

6

p
⌘4/3 + 24(1 + ⌫)2 + 164

a =
⌘4/3

12
+

6(1 + ⌫)� ⌘2/3

3
2 +

4

3
+ ã2⌃e

b = 3(1 + ⌫)3

c =
2(1 + ⌫)⌘2/3

3
c1 + (1 + ⌫)4

�1 =
1 + ⌫
2



�2 =
1 + ⌫
2

2

ã2 = �⌘4/3(c+ 3|�0|�2)
48�2

0

TABLE I: List of parameters for Eq. (1) in units h = 1, with
⌘ = 3Es/Ef , �2 = 1/12, ⌃e = (�/�c)� 1 and  = h/R. The
only remaining fitting parameter of the model is c1.
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FIG. 2: Notation and experimental system. a,
Schematic of a curved thin film adhering to a soft spheri-
cal substrate of outer radius R. b, The film (thickness h) is
driven towards a wrinkling instability by the compressive film
stress �, leading to wrinkling pattern with wavelength � and
radial displacement u. c, The experimental system consists
of two merged hemispherical caps. An air channel allows to
tune the film stress � via the pressure di↵erence �p = pe�pi.

dard Swift-Hohenberg equation, as originally derived in
the context of Rayleigh-Bénard convection [10, 34]. The
additional (�1,�2)-terms will prove crucial below when
matching theory and experiments.

The detailed derivation (Supplementary Information),
combined with systematic asymptotic analysis of the pla-
nar limit R/h ! 1, allows us to express the coe�-
cients in Eq. (1) in terms of the standard material pa-
rameters: Poisson ratio of the film ⌫, e↵ective curva-
ture  = h/R, Young ratio ⌘ = 3Es/Ef , and excess
stress ⌃e = (�/�c) � 1 (Table I). The theory contains
only a single fitting parameter, c1, related to the cubic
stretching force term cu3. Equation (1) predicts that
the unbuckled solution u = 0 is stable for negative ex-
cess stresses ⌃e < 0, whereas wrinkling occurs for ⌃e � 0.
Linear stability analysis at ⌃e = 0 and  = 0 reproduces
the classical [35] pattern wavelength relation for planar
wrinkling �/h = 2⇡⌘�1/3 (Supplementary Information).

Numerical simulation of Eq. (1) is nontrivial due to the
metric dependence of the biharmonic operator 42 [33].
To compute the stationary wrinkling patterns (Fig. 1a-c)
predicted by Eq. (1), we implemented a C1-continuous
finite-element algorithms specifically designed for covari-
ant fourth-order problems (Methods). A main benefit of
Eq. (1), however, is that it enables analytical prediction
of the various pattern formation regimes.

Pattern selection

Pattern selection in the wrinkling regime ⌃e � 0 is a
nonlinear process and, therefore, cannot be inferred from
linear stability analysis. Numerical parameter scans of
Eq. (1) yield a variety of qualitatively di↵erent station-
ary states that can be classified as representatives of a
hexagonal phase (Fig. 1a), labyrinth phase (Fig. 1c), or
intermediate coexistence phase (Fig. 1b). Qualitatively,
the transition from hexagons to labyrinths can be under-
stood through a symmetry argument: The (b,�1)-terms
in Eq. (1) break the radial reflection invariance of its so-
lutions under the transformation u ! �u. Since b and
�1 are controlled by  = h/R (Table I), we expect a
curvature-induced SB transition at some critical value
of . Furthermore, recalling that the inclusion of similar
SB terms causes a transition from labyrinths to hexago-
nal patterns in the classical SH model [34], it is plausible
to expect a hexagonal phase at large curvatures  and
labyrinths at smaller values of  in our system.
To obtain a quantitative prediction for the phase

boundaries, we approximate Eq. (1) through a
standard SH equation and make use of estab-
lished results from nonlinear stability analysis [36].
Assuming plane-wave solutions with amplitude A
and wavevector k, the �1-term exerts an aver-
age force �1h(ru)2 + 2u4ui� = ��1A2k2/2 per wave-
length �. One may therefore approximate the �1-term
by an e↵ective quadratic force ��1k2u2, and similarly
the �2-term by an e↵ective cubic force �2k2u3/2 (Supple-
mentary Information). Inserting for k the most unstable
mode, k⇤ =

p
|�0|/(2�2), Eq. (1) can be approximated

by the standard SH equation

@t� = �24��42��A��B�2 � �3 (2)

�0 =
2

3
� 1

6

p
⌘4/3 + 24(1 + ⌫)2 + 164
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⌘4/3

12
+

6(1 + ⌫)� ⌘2/3

3
2 +

4

3
+ ã2⌃e

b = 3(1 + ⌫)3

c =
2(1 + ⌫)⌘2/3

3
c1 + (1 + ⌫)4

�1 =
1 + ⌫
2



�2 =
1 + ⌫
2

2

ã2 = �⌘4/3(c+ 3|�0|�2)
48�2

0

TABLE I: List of parameters for Eq. (1) in units h = 1, with
⌘ = 3Es/Ef , �2 = 1/12, ⌃e = (�/�c)� 1 and  = h/R. The
only remaining fitting parameter of the model is c1.
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3
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+ ã2⌃e

b = 3(1 + ⌫)3

c =
2(1 + ⌫)⌘2/3

3
c1 + (1 + ⌫)4
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1 + ⌫
2


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1 + ⌫
2

2

ã2 = �⌘4/3(c+ 3|�0|�2)

48�2
0

TABLE I: List of parameters for Eqs. (38) and (60) as ob-
tained by systematic asymptotic matching to classical elas-
tic wrinkling theory, with ⌘ = 3Es/Ef , �2 = 1/12, ⌃e =
(�/�c)� 1, and  = h/R where h is the film thickness and R
the radius (see Fig. 2 of Main Text). We substituted ã and c̃
by Eqs. (50) and (73). Note that c1 is the only remaining fit
parameter of the model.

Nonlinear behavior above onset

Having determined estimates for the parameters (�̄, ã)
by analyzing the onset of wrinkling, the two remaining
unknown parameters are (ã2, c̃). Aiming to further re-
duce the number of free parameters, we now turn to the
regime beyond the wrinkling threshold, where patterns
are selected by nonlinear e↵ects. To this end, we first re-
duce the generalized Swift-Hohenbergy equation (38) to
a standard Swift-Hohenberg (SH) equation by approxi-
mating mixed �1,2-terms in Eq. (38) that contain both u
andru through e↵ective expressions that only contain u.
Assuming a typical relation between pattern amplitude
and excess film stress ⌃

e

= (�/�
c

) � 1, we can then ex-
ploit existing results for the stability of patterns in the
SH equation to predict the morphological phase diagram
of the wrinkling patterns in our experimental system.

Swift-Hohenberg approximation. To approximate
Eq. (38) by a standard SH equation, we recall that �0
and �2 select the dominant (most unstable) wave number
vector k

c

= ±
p

6|�0|, see Eq. (42a). Considering the
limit  ! 0 and a plane wave solution of the form

u = A cos(k
c

x) (55)

the �1-term in Eq. (38) exerts an average force per wave-
length � = 2⇡/|k

c

| of

D
�1

h
(ru)2 + 2u4u

iE

�

= �1

2
�1A2k2

c

(56)

where

hf(x)i
�

⌘ 1

�

Z
�

0

dx f(x) (57)

Comparing Eq. (56) with the average force exerted by a
quadratic force f = au2 for the wave solution (55),

hau2i
�

=
aA2

2
(58)

we can approximate the �1-term by an ‘equivalent’ aver-
age force term of the form

�1

h
(ru)2 + 2u4u

i
⇡ ��1k

2
c

u2 (59a)

Similarly, the average force due to the �2-term can be
approximated by a cubic force. Since the �2-term is anti-
symmetric in u, the corresponding mean force is obtained
by averaging over the interval [�/4, 3�/4], yielding

�2

h
u (ru)2 + u24u

i
⇡ �1

2
�2k

2
c

u3 (59b)

With these approximations, Eq. (38) reduces to the SH
equation

@
t

u = �04u� �242u�

au�
�
b+ �1k

2
c

�
u2 �

✓
c+

�2k
2
c

2

◆
u3.

(60)

To facilitate direct comparison with results in the lit-
erature [10], it is convenient to rewrite Eq. (60) in the
rescaled normal form

@
T

� = �24
X

��42
X

��A��B�2 � �3 (61)

where

T =
4�2t

�2
0

=
t

3�2
0

4
X

=
4
k2
c

=
4

6|�0|
� =

u

u⇤
(62)

u⇤ =

s
�2
0

4�2(c+ �2k2
c

/2)
=

s
�2
0

(c/3) + �2|�0|

A =
a

a
c

=
4a�2
�2
0

=
3a

�2
0

B =
2
�
b+ �1k

2
c

�
p

(�2
0/�2) (c+ �2k2

c

/2)
= u⇤

(b/3) + 2|�0|�1

�2
0

with a
c

given by Eq. (49).
Excess film stress. Our model accounts for the ex-

cess film stress ⌃
e

= (�/�
c

) � 1 through the contribu-
tion ã2⌃e

that appears in the coe�cient a of the linear
force, see Eq. (39). This specific functional relationship

:   fit parameter



Wrinkling - a model to study curved crystals?

A

0 20 40 60 80
0

50

100

150

200

250

300

350

Equivalent size, √ND

N
u
m

b
er

o
f
d
ef

ec
ts

Sphere
Torus
Ellipsoid

0 10 20
0

5

10

System size, R/λ

M
ea

n
ex

ce
ss

d
ef

ec
ts

0 5 10

0

5

10

Sphere

0 5 10
0

5

10

Ellipsoid

0 5 10

0

5

10

15

Torusscaling prediction for scar length: 
(M. Bowick, D. Nelson, and A. Travesset, Phys. 
Rev. B 62, 8738, 2000)

Sphere
R = 70 λ 

Torus
R = 4 r = 80 λ

Ellipsoid
R

x
 = 2 R

y
 = 2 R

z 
= 110 λ

n < 6

n = 6

n > 6

Core
Film u

max

u
min

u

Fig. 1. Wrinkling patterns on hemispherical samples. (A) Schematic diagram of the setup.

(B) Experimental sample: PDMS shell (radius R = 20.0 mm, thickness h = 0.53 ±
0.05 mm, Young modulus Ef = 2.10 MPa, Poisson ration ⌫f ⇡ 0.5) adhered to a VPS

substrate (Es = 0.23 MPa, ⌫s ⇡ 0.5, radius of cavity, r = 9.5 mm). Undeformed

configuration (at �p = 0) and wrinkled pattern (at �p = 76.4 kPa) with characteristic

wavelength, � = 4.83 ± 0.45 mm (uncertainty is s.d. of all dimples). (C ) Experimental

apparatus: 3D scanner, pneumatic system and pressure data acquisition system. (D) Surface

profile of dimpled pattern. (E ) Skeleton of the spherical Voronoi construction (black lines)

obtained from the centers of the dimples (yellow circles), superposed on surface profile. (F )

Voronoi tessellation, color coded according to the coordination number.
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Bilayer systems can be produced for 
(almost) arbitrary geometries => 
experimental testbed for curved 

crystals?

3

duced to screen the disclination-induced curvature, e↵ec-
tively lowering the total elastic energy [9, 33]. To preserve
the total charge Q =

P
i

s

i

, excess defects appear as neu-
tral pairs of opposite charge called dislocations. For large
systems, defects typically form longer chains classified
as neutral pleats or charged scars [5]. For spheres, the
number of defects per scar is predicted to grow linearly
above ⇢

c

with slope (⇡/3)[
p

11 � 5 cos�1(5/6)]⇢ ⇡ 0.41⇢

[9, 33]. This scaling has been experimentally verified in
colloidal crystals [6], and compares favorably with our
wrinkling simulations, although a power-law ⇠ (⇢� ⇢

c

)�

with ⇢

c

= 4.1 ± 0.3 and � = 0.68 ± 0.08 also fits our
data reasonably well (Fig. 2a, inset) [34]. These findings
illustrate that details of the lattice interactions are less
relevant for geometry-induced defect formation [35], cor-
roborating that wrinkle patterns provide a viable model
for studying generic aspects of curved crystals.

The screening e↵ect of dislocations and its dependence
on geometry become manifest in the relationship be-
tween Gaussian curvature and topological charge [5, 28].
The Euler and Gauss-Bonnet theorems connect the sum
of topological charges s

i

for all elements, Q =
P

i

s

i

,
with the surface integral of the Gaussian curvature,
I =

R
A

KdA = ⇡/3
P

i

s

i

= 2⇡�, where � is the Euler
characteristic of the surface. How well this relationship
is satisfied over a subregion of the surface gives first in-
sights into the geometry dependence of defect localiza-
tion. For spheres, we find that the Gauss-Bonnet the-
orem remains satisfied locally, resulting in a linear in-
crease of defect charge with integrated Gaussian cur-
vature (Fig. 2b). By contrast, for non-spherical ellip-
soidal geometries, the topological charge grows faster
than Gaussian curvature near the poles, |�| = ⇡/2, sig-
naling accumulation of positive charges in high-curvature
regions (Fig. 2c). Although tori require no topological
charge (since � = 0), our simulations predict the cre-
ation of defects that help adapt the dimple crystal to the
curved substrate geometry [19]. In the outer region of
the torus, where Gaussian curvature is positive, we find
that topological charge grows faster than linear with in-
tegrated Gaussian curvature, qualitatively similar to the
ellipsoidal case but with considerably larger spread.

Another striking phenomenon is the curvature-induced
localization and segregation of oppositely charged de-
fects. For ellipsoids, we find that the angular position
PDF of positively charged disclinations increases strongly
towards the poles, where the local Gaussian curvature is
large enough to support them (Fig. 3a). With increasing
ellipsoid size, additional scars and pleats appear. Their
centroid positions cluster in the equator region around
� = 0 (Fig. 3b), where the curvature is low and thus can-
not support isolated disclinations. To study the orienta-
tions of these extended defect ‘molecules’, we measure the
orientation angle ↵ enclosed by the end-to-end vector v

and the tangent t along coordinate lines with ✓ = const.
We find no significant orientational order for positive or

FIG. 3. (color online) Curvature-induced defect localization
on ellipsoids. (a) Isolated pentagonal +1-defects accumulate
in high curvature regions; p is the average number of single
defects per ellipsoid. (b) Although defect chains form prefer-
entially near the equator at |�| = 0, their orientation angles ↵,
measured relative to the tangent vectors t, show no signifi-
cant ordering. (c,d) Voronoi tessellations for R

x

/h = 40 and

R

x

/h = 160 FIX: indicate a weak alignment of the lattices
along lines � = const - TO BE CHECKED.

neutral chains (Fig. 3b-d), consistent with earlier simu-
lations based on an inflation packing algorithm [36].

In contrast to ellipsoids, tori contain regions of posi-
tive and negative Gaussian curvature and hence are more
prone to developing striped wrinkles. To identify the
pure crystal phase, we recall that hexagonal wrinkle pat-
terns require �(u) 6= 0 in Eq. (1) whereas local stripe
solutions emerge for �(u) ! 0 [27]. Parametrizing the
torus using standard polar coordinates (�, ✓), an estimate
for the phase boundary can be obtained by assuming a
stripe-like wrinkle pattern symmetric along ✓ and insert-
ing u(✓,�) ⌘ u(�) into the condition �(u) = 0. Solving
for �, we find the critical transition angle

�

c

= ± cos�1


1 � 3⌫

(5⌫ � 1)r/R

�
. (2)

This estimate is independent of the system size and holds
as long as R, r � �. For rubber-like materials with
⌫ ⇡ 1/2, solutions ±�

c

2 [⇡2 , ⇡] exist for aspect ratios
r/R > 1/3. We thus expect stripe-like wrinkles to dom-
inate near the inner rims of thick tori. For r/R < 1/3,
�

c

is imaginary, indicating that the symmetry-breaking
�(u)-term is globally non-zero, implying a purely hexag-
onal phase everywhere on the torus. To verify these pre-
dictions, we performed simulations for tori with aspect
ratios 0.2  r/R  0.8. Defining �

c

in simulations as the
angle beyond which less than half of the wrinkled surface
takes the form of hexagonal dimples, we find good agree-

R/�
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Substrate coupling energy. In our experiments, the
thin film is coupled to a curved soft substrate. To sim-
plify further analysis, we assume in the following that the
substrate has the same Poisson ratio ⌫ as the film, as is
the case in our experiments. We model the substrate cou-
pling as a nonlinear spring by adding a substrate energy
E
sub

to the KS energy from Eq. (13a), where

E
sub

=
E

s

2

Z

!

d!

✓
Au+

ã

h

u

2 +
c̃

h

3
u

4

◆
(31)

with E

s

denoting the Young modulus of the substrate.
The constant film thickness h could have been absorbed
into the coe�cients ã and c̃, but simplifies subsequent for-
mulas. Note that E

sub

contains a term linear in u because
we are considering the state of the film-substrate system
around a flat but displaced equilibrium solution u0. This
linear term gives rise to a corresponding constant normal
force that is needed to balance the internal normal forces
of the film.

Energy due to excess film stress. Finally, we still have
to account for the excess film stress

⌃
e

⌘ �

�

c

� 1 (32a)

where � is the film stress and �

c

the critical stress needed
for wrinkling. In our model, the energy due to excess film
stress is included by adding a term

E
�

=
E

f

2(1� ⌫

2)

Z

!
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ã2

h

⌃
e

u

2 (32b)

to the KS energy from Eq. (13a). The energy contri-
bution E

�

is crucial for capturing the system behavior
beyond the wrinkling instability. We discuss below how
the dimensionless parameter ã2 is related to the elastic
properties of the substrate. The u

2-dependence of E
�

is
a classical result from elastic wrinkling theory [5], ensur-
ing that the amplitude-stress relationship in the e↵ective
model agrees with classical wrinkling theory, as is shown
in detail further below.

Total energy density. Adding the contributions due
to substrate coupling, external forces and excess stress to
the KS energy (13a), we obtain the total elastic energy

E =
E

f

1� ⌫

2
Ē (33a)

where to leading order
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with coe�cients
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Note that for compressive stresses �̄ < 0. Thus, for suf-
ficiently large film pre-stress, �0 < 0. To obtain the ef-
fective energy functional (33), the following additional
simplifications and assumptions were adopted:

• Constant terms. We neglected all constant terms
in the energy, as they will not contribute to the
equations of motion, obtained by variation of the
energy with respect to u.

• Terms linear in u. We note that the term linear
in u gives rise to a inhomogeneous, constant term
in the equation of motion. However, u = 0 always
is an equilibrium solution by construction. More
precisely, u = 0 means that the film is radially dis-
placed by u0, which is a fundamental solution of
the problem. Therefore, the inhomogeneous term
in the equation of motion has to vanish, implying
that the coe�cient of the energy term linear in u

must be zero. The mechanical interpretation of this
condition is straightforward: For u = 0 to be an
equilibrium solution, the sum of all normal forces
acting on the film must vanish.

• Quartic terms. The quartic terms in u and
ru ensure that the e↵ective theory remains sta-
ble above the wrinkling threshold, as these terms
limit the growth of the most unstable modes. To
keep the theory as simple as possible, we only
include the dominant u

4-contribution and neglect
terms / (ru)4.

Taking the variation of Ē with respect to u, we obtain
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Substrate coupling energy. In our experiments, the
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plify further analysis, we assume in the following that the
substrate has the same Poisson ratio ⌫ as the film, as is
the case in our experiments. We model the substrate cou-
pling as a nonlinear spring by adding a substrate energy
E
sub

to the KS energy from Eq. (13a), where
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with E

s

denoting the Young modulus of the substrate.
The constant film thickness h could have been absorbed
into the coe�cients ã and c̃, but simplifies subsequent for-
mulas. Note that E

sub

contains a term linear in u because
we are considering the state of the film-substrate system
around a flat but displaced equilibrium solution u0. This
linear term gives rise to a corresponding constant normal
force that is needed to balance the internal normal forces
of the film.

Energy due to excess film stress. Finally, we still have
to account for the excess film stress
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where � is the film stress and �

c

the critical stress needed
for wrinkling. In our model, the energy due to excess film
stress is included by adding a term
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to the KS energy from Eq. (13a). The energy contri-
bution E

�

is crucial for capturing the system behavior
beyond the wrinkling instability. We discuss below how
the dimensionless parameter ã2 is related to the elastic
properties of the substrate. The u

2-dependence of E
�

is
a classical result from elastic wrinkling theory [5], ensur-
ing that the amplitude-stress relationship in the e↵ective
model agrees with classical wrinkling theory, as is shown
in detail further below.

Total energy density. Adding the contributions due
to substrate coupling, external forces and excess stress to
the KS energy (13a), we obtain the total elastic energy
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Note that for compressive stresses �̄ < 0. Thus, for suf-
ficiently large film pre-stress, �0 < 0. To obtain the ef-
fective energy functional (33), the following additional
simplifications and assumptions were adopted:

• Constant terms. We neglected all constant terms
in the energy, as they will not contribute to the
equations of motion, obtained by variation of the
energy with respect to u.

• Terms linear in u. We note that the term linear
in u gives rise to a inhomogeneous, constant term
in the equation of motion. However, u = 0 always
is an equilibrium solution by construction. More
precisely, u = 0 means that the film is radially dis-
placed by u0, which is a fundamental solution of
the problem. Therefore, the inhomogeneous term
in the equation of motion has to vanish, implying
that the coe�cient of the energy term linear in u

must be zero. The mechanical interpretation of this
condition is straightforward: For u = 0 to be an
equilibrium solution, the sum of all normal forces
acting on the film must vanish.

• Quartic terms. The quartic terms in u and
ru ensure that the e↵ective theory remains sta-
ble above the wrinkling threshold, as these terms
limit the growth of the most unstable modes. To
keep the theory as simple as possible, we only
include the dominant u

4-contribution and neglect
terms / (ru)4.

Taking the variation of Ē with respect to u, we obtain
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�u

= �04u� �242
u� au� bu

2 � cu

3 + (34)

h

2

�
(⌫ � 1)

⇥
b

↵�r
↵

ur
�

u+ 2ur
�

�
b

↵�r
↵

u

�⇤
+

2⌫
⇥
H(ru)2 � 2r · (Huru)

⇤ 
+

h

2

⇥
(1� ⌫)ur

�

�
uc

↵�r
↵

u

�
� ⌫Ru(ru)2+

⌫r · (Ru

2ru)
⇤

ut

• Effective theory for arbitrary geometries:

+ …

•                : mean curvatureH = b↵↵

• Curvature tensor non-constant on torus -> mixed phases possible

• Symmetry-breaking term could be “guessed”…!

• Rubber (ν=0.5): pure hexagonal phases for thin tori 
=> restrict r/R=0.2
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Defects on the torus
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• Charge separation due to Gaussian curvature

positive Gaussian curvature

negative Gaussian 
curvature

charge of a sphere, whereas a cylinder can be defect-free with a require-
ment of 0 total charge.

Topology constrains the total charge, but it is energetics that deter-
mines the number and the arrangement of each charge. In elasticity
theory15, disclinations appear as discrete interacting charges and the
Gaussian curvature as a charge density, both acting as sources of stress:

1
Y

+4x~G xð Þ{
X

a

qad x{xað Þ ð1Þ

where G~ 1
R1

1
R2

is the Gaussian curvature (with R1 and R2 the principal
radii of curvature), qa is the charge of the disclination at xa, d represents
a Dirac delta function, Y is Young’s modulus and x is the Airy stress
function—and we will refer to the partial or complete cancellation of
the effects of curvature and stress by topological charges (r.h.s. of
equation (1)) as screening. For curvature concentrated at a point, as
in our model paper disclinations of Fig. 2c, the screening can be per-
fect, the lattice is stress free and the energy E~ 1

2Y

Ð
+2x
" #2 dA~0

(where we have assumed no bending energy). For smooth surfaces, the
screening is more subtle. Geometry provides some insight: consider a
geodesic triangle drawn on a curved surface, for example, a sphere.
Curvature causes lines to diverge or converge, affecting the angles at
the vertices: the sum of the external angles will differ from 2p by
Dh 5 #GdA. The same applies to any closed loop formed by connecting
lattice sites and serves as a measure of angular strain. If instead, a
disclination is encircled by the loop, by definition this adds/removes

a contribution of 6(2p/6) regardless of the size of the loop. If sufficient
curvature is enclosed, the angular stress generated by the disclination is
screened on the outside. Within the patch the screening is incomplete
and leads to an energetic cost. For later use we define V~ 1

p=3

Ð
G dA,

the integrated curvature in units of disclinations.
The crystals we create consist of poly(methyl methacrylate)

(PMMA) particles (,2mm diameter) that are bound to an oil–glycerol
interface and repel each other. By index-matching the oil to the
glycerol, we can image the full surfaces (Fig. 1, Methods). The first
surfaces we investigate are domes (truncated spheres), created by
droplets sitting on a coverslip, with a circular contact line. The contact
angle, controlled by treating the glass surface, determines the solid
angle of the spherical droplet.

The domes (Fig. 3) exhibit both disclinations and scars as previously
seen on spherical surfaces. However, for domes, the net disclination
charge on the surface can vary as the dome inflates from a disk to a full
sphere. In Fig. 3b we show the topological charge that is on the surface of
the dome and detached from the boundary as a function of V. We find
the intuitive result that the detached charge varies approximately line-
arly with V. That is, for a full sphere there are 12 pentagons (1p/3)s, for
a hemisphere there are 6 pentagons (1p/3)s and on smaller fractions
the two remain approximately proportional. Note that the topological
requirement of a total of 6 (1p/3)s is satisfied at all times by com-
pensating charges on the boundary.

Negative curvature surfaces lack the simplicity and familiarity that
we associate with positive curvature surfaces such as the sphere. For

b

a

c

d

e f

Figure 2 | Disclinations and pleats in a hexagonal lattice. a, Disclinations in a
hexagonal lattice are topological defects that result from an extra (right panels)
or missing (left panels) 60u crystalline wedge that matches their topological
charge of 1/2(2p/6) marked here by cream/brick circles, respectively. At the
‘core’ of the disclination is a corresponding five-fold (or seven-fold) coordinated
particle. In flat space, disclinations produce a large amount of stress in a crystal,
disrupting orientational order. b, This stress can be relieved by buckling the
crystal to create a curved surface. Five-fold disclinations are sources of positive
Gaussian curvature, seven-fold disclinations of negative curvature. c, This
coupling can be intuitively understood by making disclinations out of paper (see
Supplementary Information for instructions and cut-outs). Paper can be bent
much more easily than it can be stretched/compressed, so it bends, resulting in a
surface free of stress, with all the Gaussian curvature concentrated at the
locations of the disclinations. Neighbouring crystal planes diverge on these
surfaces, matching the geodesics of the curved surface. d, Dislocations,

uncharged pairs of seven- and five-fold disclinations, can also be made by
folding and gluing hexagonal paper. A set of three closely spaced, aligned
dislocations (7-5,7-5,7-5) are shown on an approximately relaxed sheet. This is a
grain boundary which vanishes at the centre of the sheet—a ‘pleat’. Note that
negative curvature emanates from the vanishing point of the pleat, as evidenced
both by the buckling of the sheet and by the 30u divergence of parallel lines
impinging from the top. e, A stress-free pleat can be achieved by allowing steps
out of the surface. The pleat retains the property that width is added along the
pleat length in proportion to the linear density of dislocations. f, The top of the
Chrysler building in New York consists of four vertical pleats on a cylinder. Here
the pleats are formed from dislocations in a square field. Counting from the top,
steps 3, 4, 5, 6 are approximately equally spaced at 8.4 m and form a cone with no
Gaussian curvature. A gradient in linear dislocation density is achieved by
spacing the second and first step at 9.4 m and 9.8 m spacing, resulting in a spike
with negative Gaussian curvature crowning the cone.
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• Electrostatic analogy (M. Bowick et al, Phys. Rev. E 69, 2004)



Defects on the torus
• For larger system size, scars 

orient in this field
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Defects on the torus
• For larger system size, scars 

orient in this field
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• Defects arranging along a geodesics with minimal 
total squared Gaussian curvature?
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Conclusions
• Starting from the classical Koiter shell model, we systematically derived an 

effective wrinkling equation 

• Matched to experiments, the theory reproduces qualitatively and quantitatively 
the morphologies and phase diagram of curved bilayer wrinkles. 

• Wrinkling can be used to study defect formation on spheres and tori, with the 
later showing a “toroidal” superstructure.
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