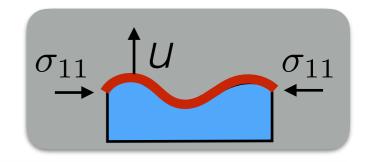
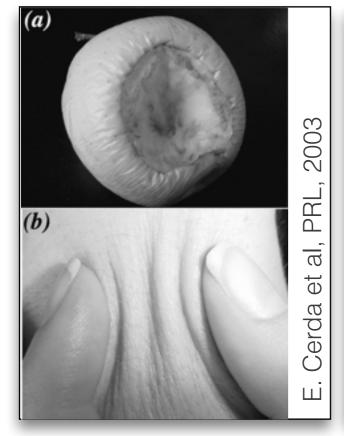
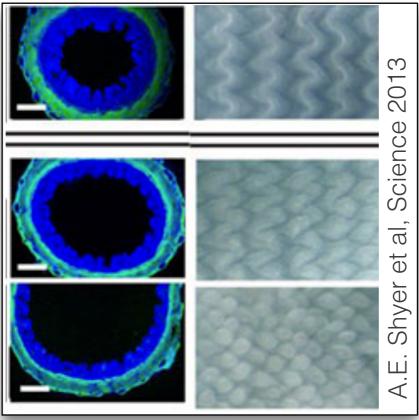
An effective model for the wrinkling of elastic bilayer systems

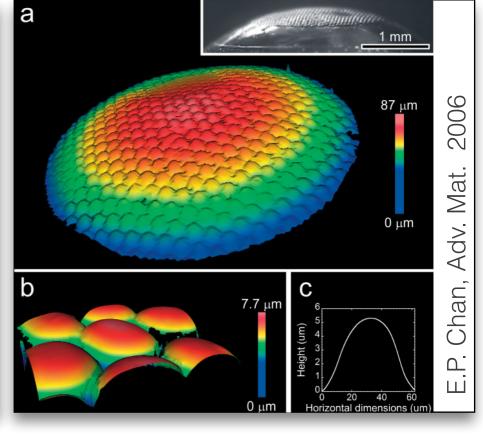
KITP, 2015

Norbert Stoop, Dunkel group MIT Dept. of Mathematics

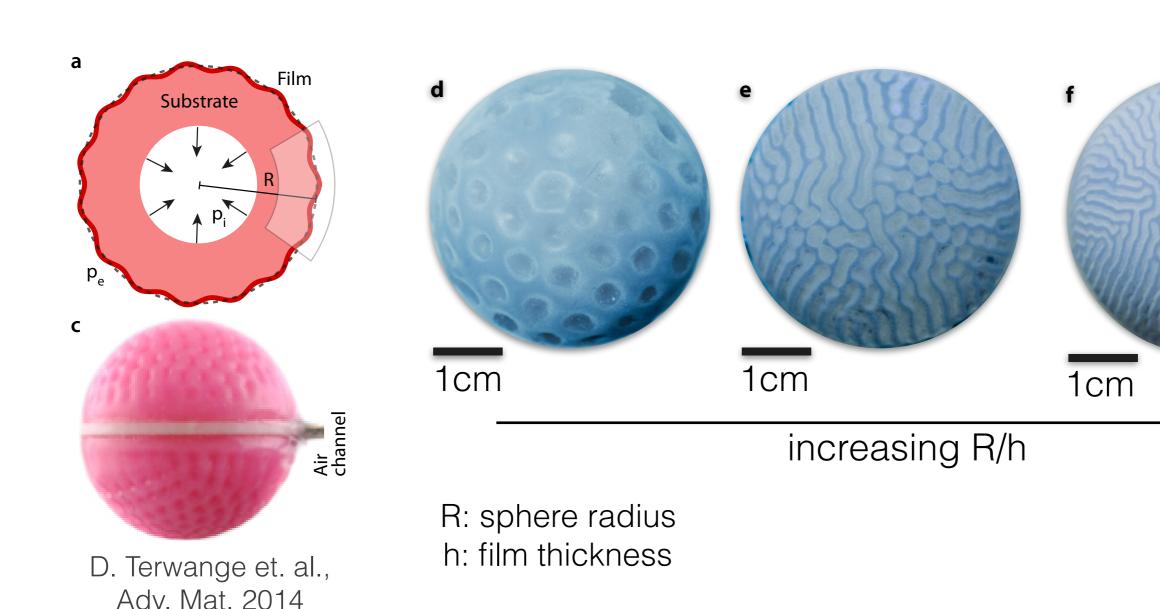




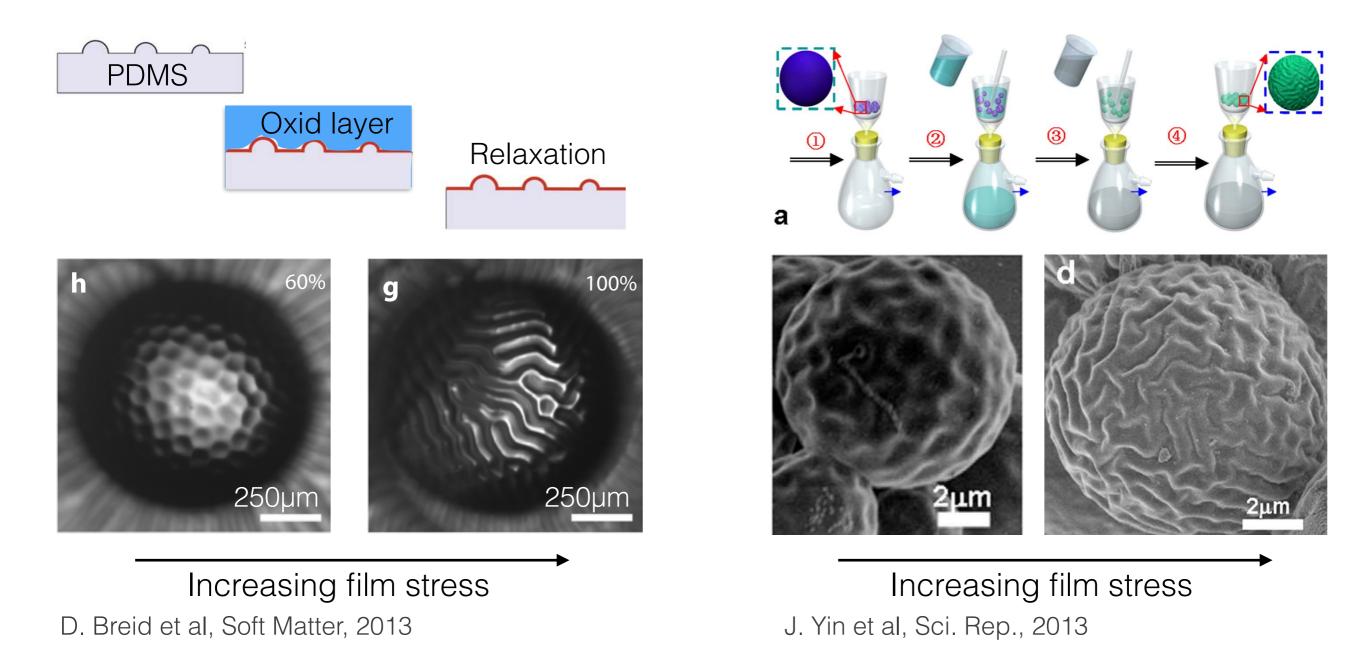




Curvature-induced phase transition



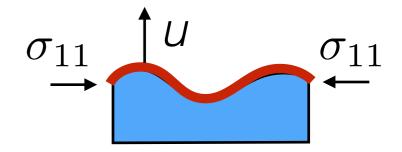
Influence of film stress



Experiments suggest: Curvature and film stress determine wrinkling patterns

Wrinkling of thin films on substrates: Known results

• Planar case: System described by nonlinear Föppl-von Karman equations for normal displacement u and in-plane stresses $\sigma_{\alpha\beta}$



- In addition to Karman's equations, the elasticity BVP of the substrate needs to be solved.
- Difficulties:
 - Karman equations...
 - Curved substrates?
- Linear stability analysis gives critical buckling stress and wavelength:

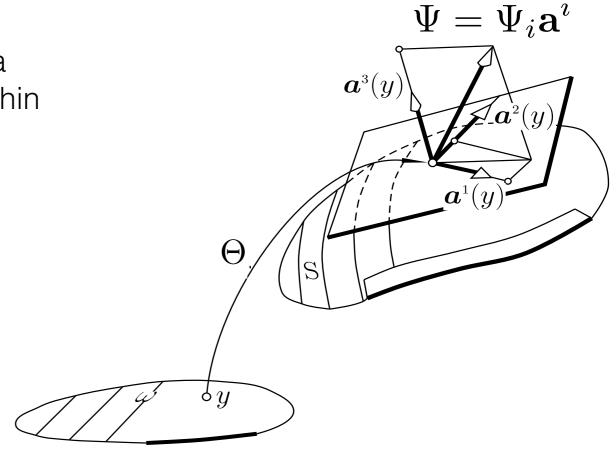
$$k_c = 2\pi/\lambda_c = \left(3\frac{E_s}{E_f}\right)^{\frac{1}{3}}$$

Es: Substrate Young modulus

Ef: Film Young modulus

- We start from the Koiter shell (KS) model, a covariant formulation of the mechanics of thin films.
- Parameters and fields:

E_f	Film Young modulus
h	Film thickness
R	Substrate radius
ν	Poisson ratio
$\Psi = \Psi_i \mathbf{a}^i$	Displacement field



The KS energy is

$$\mathcal{E}_{\mathrm{KS}}(\Psi) = \mathcal{E}_b(\Psi) + \mathcal{E}_s(\Psi) + \mathcal{E}_f(\Psi)$$
 bending stretching ext. forces energy energy (pressure)

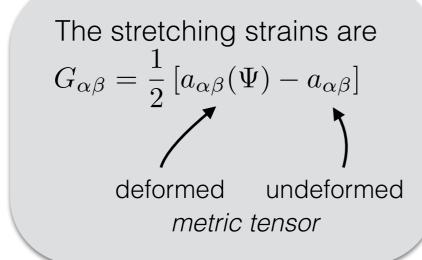
effective model: substrate coupling via ext. forces

• Bending and stretching energy are described entirely by the displacement field ψ :

$$\mathcal{E}_s = \frac{E_f}{2(1-\nu^2)} \int_{\omega} d\omega \, \frac{h}{2} H^{\alpha\beta\gamma\delta} G_{\gamma\delta}(\Psi) G_{\alpha\beta}(\Psi)$$

$$\mathcal{E}_b = \frac{E_f}{2(1-\nu^2)} \int_{\omega} d\omega \, \frac{h^3}{24} H^{\alpha\beta\gamma\delta} R_{\gamma\delta}(\Psi) R_{\alpha\beta}(\Psi)$$

H: constitutive tensor (material law)



The bending strains are $R_{\alpha\beta}=b_{\alpha\beta}(\Psi)-b_{\alpha\beta}$ deformed undeformed curvature tensor

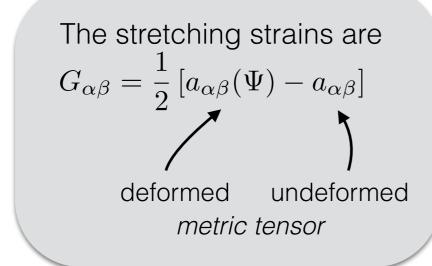
• Expand Ψ in dominant part u (normal displacement)

• Bending and stretching energy are described entirely by the displacement field ψ :

$$\mathcal{E}_s = \frac{E_f}{2(1-\nu^2)} \int_{\omega} d\omega \, \frac{h}{2} \mathbf{H}^{\alpha\beta\gamma\delta} G_{\gamma\delta}(\Psi) G_{\alpha\beta}(\Psi) \qquad \qquad \text{stretching}$$
 strain stress

$$\mathcal{E}_b = \frac{E_f}{2(1-\nu^2)} \int_{\omega} d\omega \, \frac{h^3}{24} H^{\alpha\beta\gamma\delta} R_{\gamma\delta}(\Psi) R_{\alpha\beta}(\Psi)$$

H: constitutive tensor (material law)



The bending strains are $R_{\alpha\beta} = b_{\alpha\beta}(\Psi) - b_{\alpha\beta}$ deformed undeformed curvature tensor

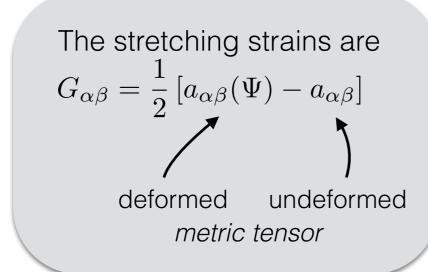
• Expand Ψ in dominant part u (normal displacement)

• Bending and stretching energy are described entirely by the displacement field ψ :

$$\mathcal{E}_{s} = \frac{E_{f}}{2(1-\nu^{2})} \int_{\omega} d\omega \, \frac{h}{2} \mathbf{H}^{\alpha\beta\gamma\delta} G_{\gamma\delta}(\Psi) G_{\alpha\beta}(\Psi) \qquad \text{stretching strain stress}$$

$$\mathcal{E}_{b} = \frac{E_{f}}{2(1-\nu^{2})} \int_{\omega} d\omega \, \frac{h^{3}}{24} \mathbf{H}^{\alpha\beta\gamma\delta} R_{\gamma\delta}(\Psi) R_{\alpha\beta}(\Psi) \qquad \text{bending strain stress}$$

H: constitutive tensor (material law)



The bending strains are $R_{\alpha\beta}=b_{\alpha\beta}(\Psi)-b_{\alpha\beta}$ deformed undeformed curvature tensor

• Expand Ψ in dominant part u (normal displacement)

• Substrate energy contribution: Nonlinear spring, Young modulus Es

$$\mathcal{E}_{sub} = \frac{E_s}{2} \int_{\omega} d\omega \left(\frac{\tilde{a}}{h} u^2 + \frac{\tilde{c}}{h^3} u^4 \right)$$

• Excess film stress: $\Sigma_e \equiv rac{\sigma}{\sigma_c} - 1$

$$\mathcal{E}_{\sigma} = \frac{E_f}{2(1-\nu^2)} \int_{\omega} d\omega \, \frac{\tilde{a}_2}{h} \Sigma_e u^2$$

3 unknown stiffness parameters:

 $\tilde{a},\, \tilde{c}$ Effective substrate stiffness

 $\tilde{a}_2 < 0$ stress-induced destiffening

Variation of total energy w.r.t. u gives effective wrinkling equation.

Effective wrinkling equation

Assuming overdamped dynamics, we obtain an effective wrinkling equation for the normal displacement field u:

$$\partial_t u = \gamma_0 \Delta u - \gamma_2 \Delta^2 u - au - bu^2 - cu^3$$

$$+ \Gamma_1 \left[(\nabla u)^2 + 2u \Delta u \right] + \Gamma_2 \left[u(\nabla u)^2 + u^2 \Delta u \right]$$

symmetry-breaking depends on curvature:

$$b \sim \frac{1}{R^3} \quad \Gamma_1 \sim \frac{1}{R}$$

b, Γ_1 : break symmetry u \rightarrow -u

Effective wrinkling equation

Assuming overdamped dynamics, we obtain an effective wrinkling equation for the normal displacement field u:

$$\partial_t u = \gamma_0 \Delta u - \gamma_2 \Delta^2 u - au - bu^2 - cu^3$$

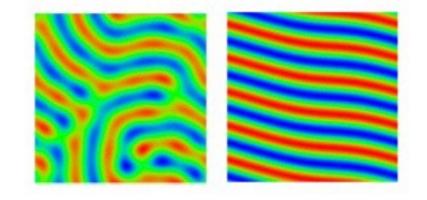
$$+ \Gamma_1 \left[(\nabla u)^2 + 2u \Delta u \right] + \Gamma_2 \left[u(\nabla u)^2 + u^2 \Delta u \right]$$

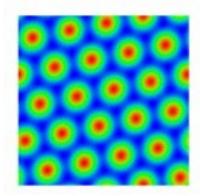
symmetry-breaking depends on curvature:

$$b \sim \frac{1}{R^3} \quad \Gamma_1 \sim \frac{1}{R}$$

b, Γ_1 : break symmetry u \rightarrow -u

First line (planar case): Swift-Hohenberg equation (Rayleigh-Bénard convection)

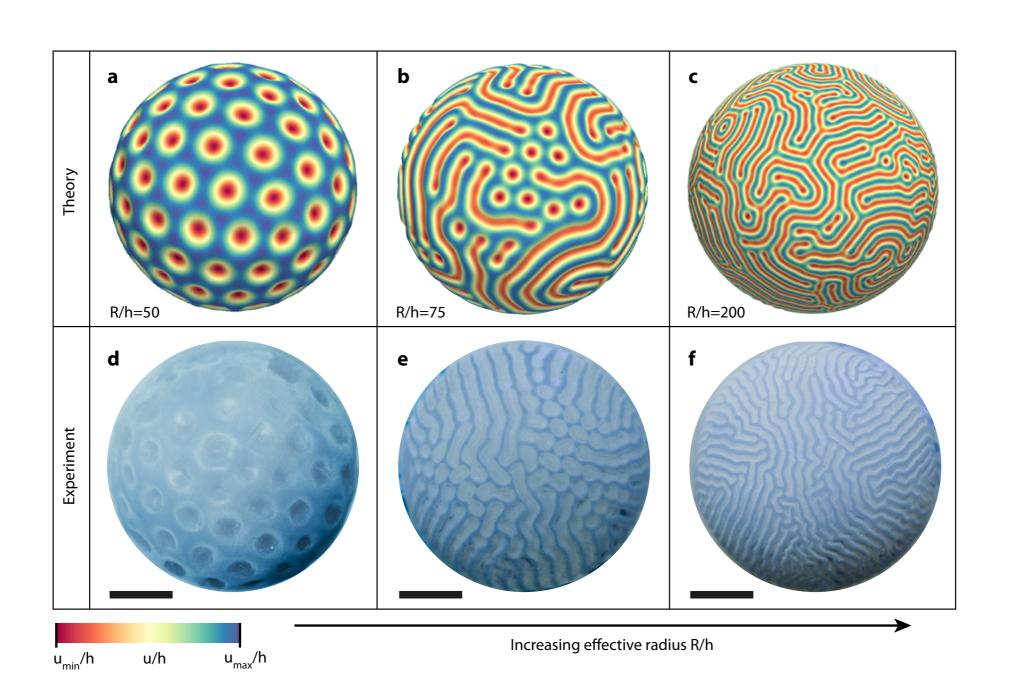




sym.breaking coefficients = 0

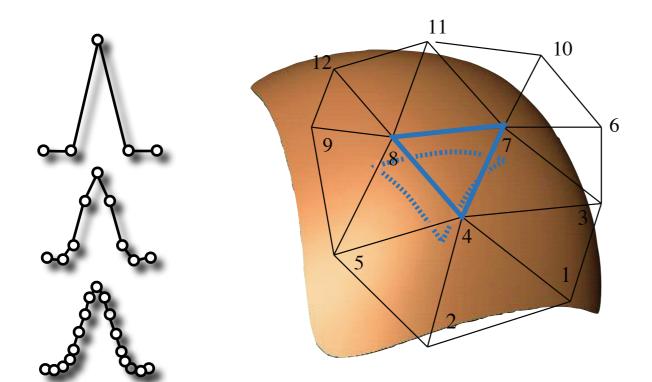
sym.breaking coefficients > 0

Numerical results



A word about numerics...

- Need to solve covariant, 4th order PDE on a surface...
- Use a spline-based Finite Element method (Cirak, 2001):



• Limit of infinitely many subdivisions (J. Stam, 1966):

$$\mathbf{x}(\theta^1, \theta^2) = \sum_{I=1}^{12} N^I(\theta^1, \theta^2) \mathbf{x}_I$$

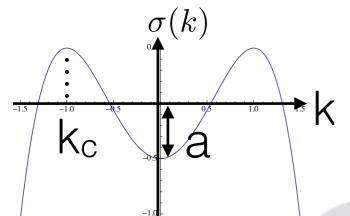
N¹: quartic spline functions

Wavelength and stiffness matching

Wrinkling equation: $\partial_t u = \gamma_0 \Delta u - \gamma_2 \Delta^2 u - au - bu^2 - cu^3$ $+ \Gamma_1 \left[(\nabla u)^2 + 2u \Delta u \right] + \Gamma_2 \left[u(\nabla u)^2 + u^2 \Delta u \right]$

Undetermined: γ_0 and 3 effective stiffness parameters (in parameters a and c).

Asymptotic matching in the planar case R-> ∞ : Perturb unwrinkled state u=0 with plane waves $\epsilon e^{ikx+\sigma t}$



Wavelength: $|k| = \sqrt{\frac{|\gamma_0|}{2\gamma_2}}$ classical wrinkling: $k_c = \left(3\frac{E_s}{E_f}\right)^{\frac{1}{3}}$

=> determines γ_0

Bifurcation condition:

$$a = \frac{\gamma_0^2}{4\gamma_2} = \frac{1}{12} \left(\frac{3E_s}{E_f}\right)^{4/3}$$

=> linear substrate stiffness

Amplitude law for wrinkles:

$$\epsilon/h = \sqrt{\Sigma_e}$$

=> stress destiffening constant

=> one fit parameter (appearing in c) remains undetermined

Parameters

$$\partial_t u = \gamma_0 \Delta u - \gamma_2 \Delta^2 u - au - bu^2 - cu^3$$

$$+ \Gamma_1 \left[(\nabla u)^2 + 2u \Delta u \right] + \Gamma_2 \left[u(\nabla u)^2 + u^2 \Delta u \right]$$

Geometry & material parameters

$$\eta = 3E_s/E_f$$
 $\Sigma_e = (\sigma/\sigma_c) - 1$
 $\gamma_2 = 1/12$ $\kappa = h/R$

One free fit parameter c_1

$$\gamma_{0} = \frac{\kappa^{2}}{3} - \frac{1}{6}\sqrt{\eta^{4/3} + 24(1+\nu)\kappa^{2} + 16\kappa^{4}}$$

$$a = \frac{\eta^{4/3}}{12} + \frac{6(1+\nu) - \eta^{2/3}}{3}\kappa^{2} + \frac{\kappa^{4}}{3} + \tilde{a}_{2}\Sigma_{e}$$

$$b = 3(1+\nu)\kappa^{3}$$

$$c = \frac{2(1+\nu)\eta^{2/3}}{3}c_{1} + (1+\nu)\kappa^{4}$$

$$\Gamma_{1} = \frac{1+\nu}{2}\kappa$$

 $\Gamma_2 = \frac{1+\nu}{2}\kappa^2$

 $\tilde{a}_2 = -\frac{\eta^{4/3}(c+3|\gamma_0|\Gamma_2)}{48\gamma_0^2}$

Understanding curvatureinduced pattern transition

$$\partial_t u = \gamma_0 \Delta u - \gamma_2 \Delta^2 u - au - bu^2 - cu^3$$

$$+ \Gamma_1 \left[(\nabla u)^2 + 2u \Delta u \right] + \Gamma_2 \left[u(\nabla u)^2 + u^2 \Delta u \right]$$

- Approximate Γ_1 and Γ_2 terms by average quadratic and cubic forces.
- We obtain a standard Swift-Hohenberg equation for wrinkling:

$$\partial_t u = \gamma_0 \triangle u - \gamma_2 \triangle^2 u - au - \left(b + \Gamma_1 k_c^2\right) u^2 - \left(c + \frac{\Gamma_2 k_c^2}{2}\right) u^3$$

• (Known) nonlinear stability analysis predicts phase transition lines:

Hexagonal phase:
$$-\kappa^2/(20c_1^2) < \Sigma_e < \kappa^2/c_1^2$$

Bistable phase: $\kappa^2/c_1^2 < \Sigma_e < 4\kappa^2/c_1^2$
Labyrinth phase: $4\kappa^2/c_1^2 < \Sigma_e$

$$\Sigma_e = (\sigma/\sigma_c) - 1$$
 $\kappa = h/R$
 c_1 : fit parameter

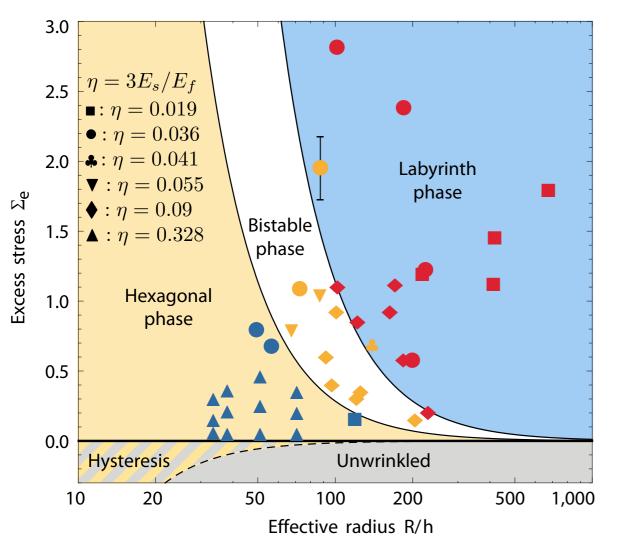
Phase & bifurcation diagram

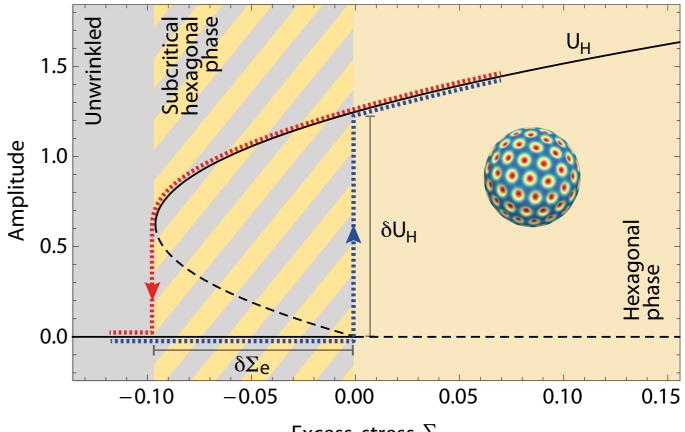
Nonlinear stability analysis predicts phase transition lines:

Hexagonal phase:
$$-\kappa^2/(20c_1^2) < \Sigma_e < \kappa^2/c_1^2$$

Bistable phase: $\kappa^2/c_1^2 < \Sigma_e < 4\kappa^2/c_1^2$
Labyrinth phase: $4\kappa^2/c_1^2 < \Sigma_e$

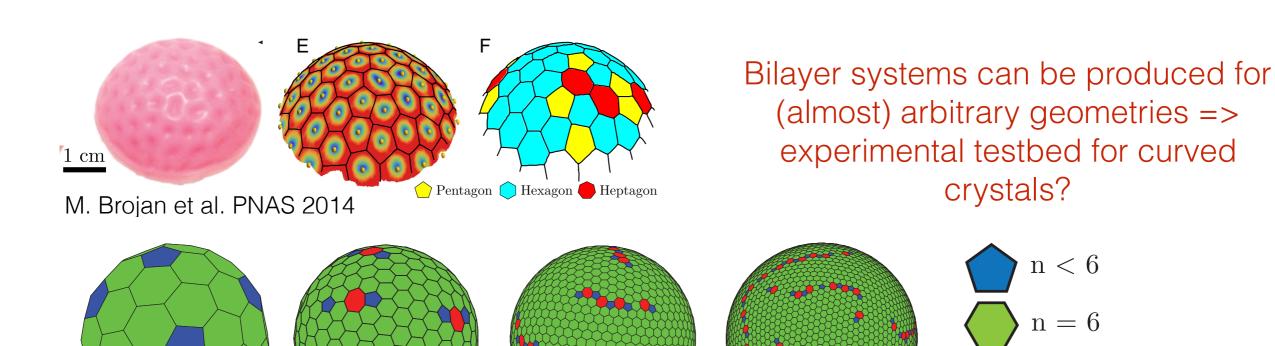
$$\Sigma_e = (\sigma/\sigma_c) - 1$$
 $\kappa = h/R$
 c_1 : fit parameter

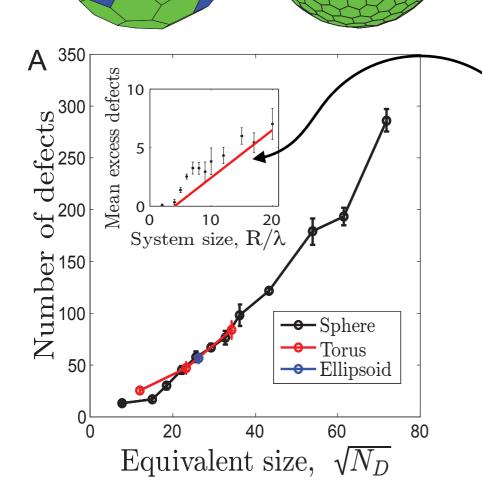




Possibility to stabilize hexagonal patterns via hysteresis?

Wrinkling - a model to study curved crystals?





scaling prediction for scar length: (M. Bowick, D. Nelson, and A. Travesset, Phys. Rev. B 62, 8738, 2000)

$$(\pi/3)[\sqrt{11} - 5\cos^{-1}(5/6)]R/\lambda$$

n < 6

n = 6

n > 6

Arbitrary closed surfaces & tori

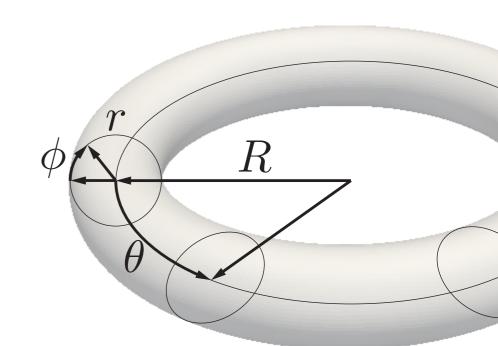
Effective theory for arbitrary geometries:

$$u_{t} = \gamma_{0} \Delta u - \gamma_{2} \Delta^{2} u - au - bu^{2} - cu^{3} +$$

$$\frac{h}{2} \left\{ (\nu - 1) \left[b^{\alpha\beta} \nabla_{\alpha} u \nabla_{\beta} u + 2u \nabla_{\beta} \left(b^{\alpha\beta} \nabla_{\alpha} u \right) \right] +$$

$$2\nu \left[\mathcal{H}(\nabla u)^{2} - 2\nabla \cdot (\mathcal{H}u \nabla u) \right] \right\}$$

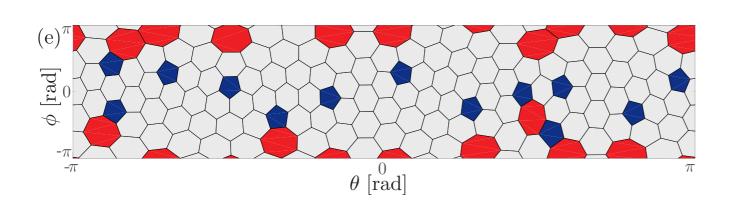
$$+ \dots$$

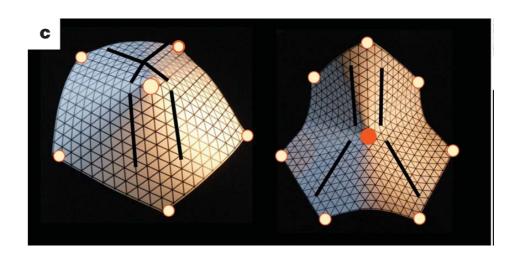


- $\mathcal{H}=b^{lpha}_{lpha}$: mean curvature
- Symmetry-breaking term could be "guessed"...!
- Curvature tensor non-constant on torus -> mixed phases possible
- Rubber (v=0.5): pure hexagonal phases for thin tori
 restrict r/R=0.2

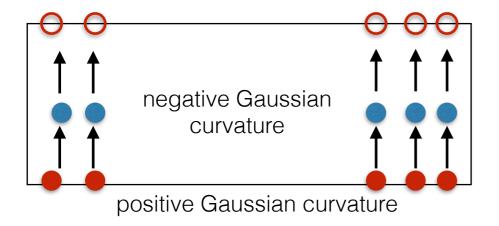
Defects on the torus

Charge separation due to Gaussian curvature



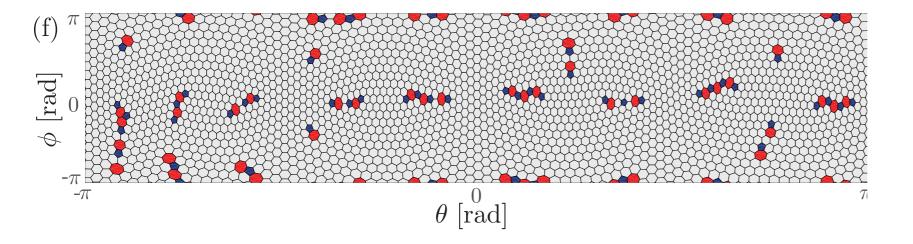


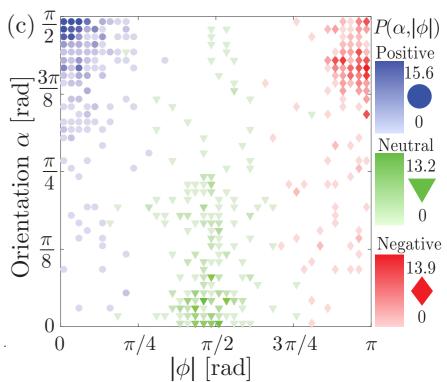
• Electrostatic analogy (M. Bowick et al, Phys. Rev. E 69, 2004)



Defects on the torus

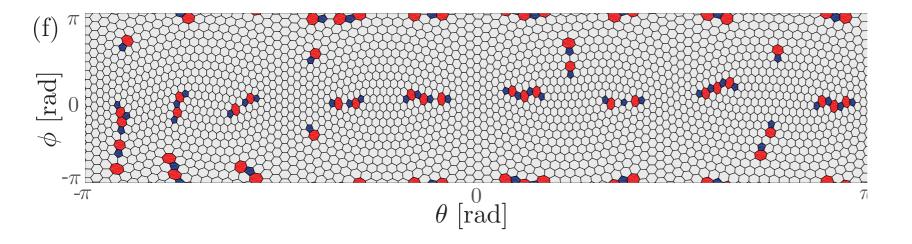
 For larger system size, scars orient in this field

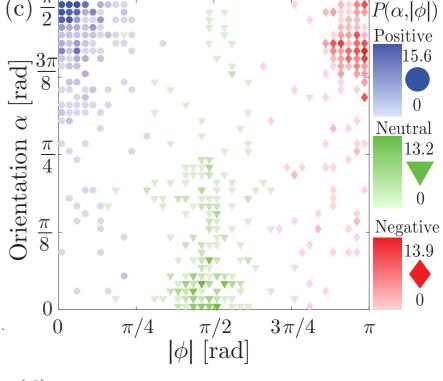


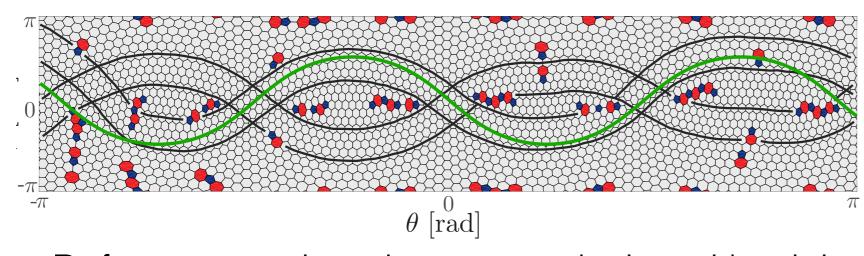


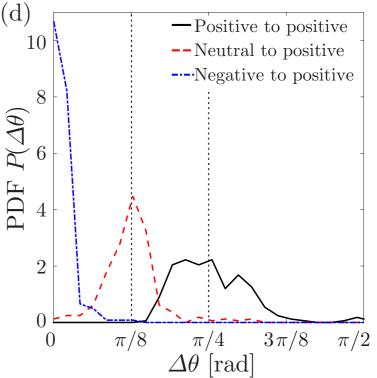
Defects on the torus

 For larger system size, scars orient in this field









 Defects arranging along a geodesics with minimal total squared Gaussian curvature?

Conclusions

- Starting from the classical Koiter shell model, we systematically derived an effective wrinkling equation
- Matched to experiments, the theory reproduces qualitatively and quantitatively the morphologies and phase diagram of curved bilayer wrinkles.
- Wrinkling can be used to study defect formation on spheres and tori, with the later showing a "toroidal" superstructure.

Collaborators:

- Jörn Dunkel, Romain Lagrange, Francisco Jimenez, Pedro Reis, MIT
- Denis Terwange, ULB Bruxelles, Belgium

References:

- N. Stoop, R. Lagrange, D. Terwange, P. Reis, J. Dunkel, Curvature-induced symmetry-breaking determines elastic surface patterns, Nat. Mater. (2015)
- F. L. Jimenez, N. Stoop, R. Lagrange, J. Dunkel, P. Reis, Curvature-controlled defect localization in crystalline wrinkle patterns, arxiv.org/abs/1509.06547