
  

Generic Singularities in Cosmological Spacetimes
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• Singularities in general relativity.
• Spatially homogeneous cosmologies.
• Spatially inhomogeneous cosmologies with 1 or 2 symmetry 

directions.
• Open questions.

See BKB, Liv. Rev. Rel. (www.livingreviews.org)



• Singularity theorems:  Regular, generic initial data for 
reasonable matter will evolve to yield a pathological 
behavior if gravity becomes sufficiently strong. 
• The nature of the pathology is not predicted and various 
types are known in special cases.

• Cosmic censorship hypotheses:  
– (1) Generically, singularities will be hidden inside the 
horizons of black holes.  Naked singularities do not occur in 
nature. 
– (2) Time-like singularities will not occur generically even 
inside a horizon. An observer will only detect a singularity by 
hitting it.
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Note that in this context “quantum”
matter can be “unreasonable.”
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A cosmological spacetime lacks an asymptotically flat region.

The singularity in the FRW cosmology is spacelike and characterized 
by “curvature blowup.”

What happens in more general cosmological spacetimes with 
anisotropic expansion and/or spatial inhomogeneities?



Cosmological spacetimes can have anisotropic expansion and no matter: 

R → (Rx, Ry, Rz) → (Ω, β+,β
−

)

Ω̇2
− V (Ω, β+, β

−
) = 8πG(ρmatter + ρanis)

ρanis ∝ β̇2
+ + β̇2

−

Anisotropy “energy” can act as a source for expansion. Spatial 
scalar curvature V will act as a “potential” for the dynamics in 
“minisuperspace.” 
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The Minisuperspace Picture:

The anisotropy parameters of a spatially homogeneous universe at 
a given time define a point in MSS. The trajectory in MSS is
determine by Einstein’s equations. Spatial scalar curvature and
rotation provide “walls.” 

Shear1

Shear2



  

The Kasner Spacetime (vacuum, Bianchi Type I):

ds2
= − dt2 + t2p1dx2

+ t2p2dy2
+ t2p3dz2

3∑

i=1

pi = 1 =

3∑

i=1

p
2

i

p1 =
−u

u2 + u + 1
; p2 =

u + 1

u2 + u + 1
; p3 =

u(u + 1)

u2 + u + 1

where

The three Kasner indices may be parametrized by a single 
variable u (introduced by BKL):



  

The Kasner Spacetime (vacuum, Bianchi Type I):
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Each u-value in               indicates a distinct Kasner evolution.[1,∞]

A set of measure zero: The (1,0,0) Kasner               is the 
Minkowski spacetime in different coordinates.

u = ∞
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The Kasner Singularity:

√

3g = t

κ = R
µνρσ

Rµνρσ =
16

t4

u2 (u + 1)2

(u2 + u + 1)3

Note that in the collapse (expansion) direction, one Kasner axis is 
expanding (collapsing). However,

and the first non-zero curvature invariant blows up as
unless              : u = ∞

t → 0

This is a spacelike, curvature blowup singularity just as for FRW.



  

The Kasner Spacetime is a “free particle” in minisuperspace:

(

p+

pΩ

)2

+

(

p
−

pΩ

)2

= v
2
+ + v

2
−

= 1

β± = v± |Ω|

In terms of                            and the momenta conjugate to the MSS 
variables, Einstein’s equations may be obtained by variation of the 
Hamiltonian constraint  

dτ = e
−3Ω

dt

H = − p2
Ω + p2

+ + p2
−

= 0

to yield

Note that the straight line trajectory in MSS may be described by a 
single angle θ which may be shown to be equivalent to u.

The Kasner singularity is “velocity term dominated” (VTD).



Aside on the role of matter (or effective matter):
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Taub spacetime (vacuum Bianchi Type II):

For these models, the Hamiltonian constraint  

to yield

This can be treated exactly as scattering off an exponential potential 
relating the initial Kasner epoch to the final Kasner epoch.

This singularity is “asymptotically velocity term dominated” (AVTD) 
because there is a last “bounce” off the potential.

H = −p2
Ω + p2

+ + p2
−

+ e−8β++4Ω
= 0

p
2
+

p2
Ω

+
p
2
−

p2
Ω

+
e
−8β++4Ω

p2
Ω

= 1



  

Conservation of momentum can be used to develop “bounce laws”
to relate asymptotically constant variables before (e.g.        ) and 
after (e.g.          ) the bounce off the potential:

V(w)

w

E

uin

uout
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Typical trajectory in minisuperspace:

(The single “wall” could be oriented at any angle.)



  

Method of Consistent Potentials  (Grubisic, Moncrief) :
1. Neglect all terms arising from spatial dependence
and solve the truncated Einstein equations (ODE's).
This yields the Velocity Term Dominated  solution
as τ → ∞ at each spatial point.

2. Substitute the VTD solution into the full Einstein
equations.  If all previously neglected terms are
exponentially small as τ → ∞, we predict that the full
solution is Asymptotically VTD . 
3. Terms which are not exponentially small act as
potentials which then dominate the dynamics.
4. Compare the prediction to numerical simulations
of the full Einstein equations.

Click here
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This yields the Velocity Term Dominated  solution
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2. Substitute the VTD solution into the full Einstein
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exponentially small as τ → ∞, we predict that the full
solution is Asymptotically VTD . 
3. Terms which are not exponentially small act as
potentials which then dominate the dynamics.
4. Compare the prediction to numerical simulations
of the full Einstein equations.

Note that spatial scalar curvature in spatially homogeneous 
cosmologies arises from spatial derivatives.

Click here



  

Application of the MCP to the Taub spacetime:

β± = v± |Ω|
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The “most general” homogeneous cosmology is 
(non-diagonal) Bianchi IX: 

• Mixmaster models (diagonal) 

ds
2

= −N
2
dτ

2
+ e

2Ω
(

e
2β

)

ij
σ

i
σ

j

dσ
i
= ε

i
jk σ

j
∧ σ

k

2H = − p2
Ω + p2

+ + p2
−

+ e4α
+ e4ζ

+ e4γ
+ . . .

where

In minisuperspace,

= 0



  

β+/|Ω|

β−/|Ω|

α = 0
ζ = 0

γ = 0

Mixmaster dynamics is an infinite sequence of Kasner epochs. 

One Kasner epoch changes to another in a bounce off one of 
the exponential potentials. 

α = Ω − 2β+

ζ = Ω + β+ +
√

3β
−

γ = Ω + β+ −

√

3β
−

2H = − p2
Ω + p2

+ + p2
−

+ e4α
+ e4ζ

+ e4γ
+ . . .

If β± = v ± |Ω|, one of α, ζ, or γ must grow.
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From a numerical simulation:

Berger, B. K., GarØnkle, D., andStrasser, E., Class. Quantum Grav. 14, L29 (1996).Garfinkle
BKB, D. Garfinkle, E. Strasser, CQG 14, L29 (1996).
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Evolution of u from a typical Mixmaster simulation follows the 
(chaotic) BKL map:
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How well does a Mixmaster simulation obey the u-map?
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Onset of qualitative deviation from u-map (computed with Mathematica) 
for double and quadruple precision ODE solutions.
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Exceptional case: Any rational u-value will eventually yield              .u = ∞

Except for Taub initial data, usually negligible terms in the potential 
will restore Mixmaster dynamics.



  

A Mixmaster simulation with > 250 bounces:

Ringström has proven that the Mixmaster singularity for non-Taub 
initial data is of the curvature blow-up type.
H. Ringström, Class.Quant.Grav. 17 (2000) 713-731.

β+/|Ω|

β
−

/|Ω|



  

A Mixmaster simulation with > 250 bounces:
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A Mixmaster simulation with > 250 bounces:

Ringström has proven that the Mixmaster singularity for non-Taub 
initial data is of the curvature blow-up type.
H. Ringström, Class.Quant.Grav. 17 (2000) 713-731.

β+/|Ω|

β
−

/|Ω|

Ω is a logarithmic 
time coordinate. The 
ratio of the Planck 
time to the Hubble 
time gives 
ΔΩ ≈ 1000.  
However, 250 
bounces requires 
ΔΩ ≈ 1060 .



  

Is the Mixmaster singularity generic?
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) + e6ΩV (ϕ) = 0

Minimally coupled 
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Mixmaster oscillations 
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v
2
+ + v

2
−

< 1.

Scalar fields and extra dimensions can cause a final “bounce.” 
Additional fields (e.g. magnetic) can restore Mixmaster dynamics by 
adding walls. 



  

Spatially inhomogeneous cosmological spacetimes:

BKL claim that sufficiently close to the singularity, spatial
derivatives become dynamically irrelevant compared to time
derivatives so that each spatial point evolves as a separate 
universe with either an AVTD or Mixmaster singularity.

↓
toward

the
singularity
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“Qualitative” studies of collapsing U(1) symmetric spatially 
inhomogeneous cosmologies with T3 spatial topology:

The BKL conjecture implies that eventually in a collapsing
cosmology, we can consider an independent minisuperspace
at every spatial point. 



  

Do U(1) symmetric cosmologies exhibit local Mixmaster dynamics?

Perform a canonical transformation:

Five degrees of freedom x, z, Λ,φ,ω depend on
spatial variables u, v and timeτ. 

Berger, B. K. andMoncrief, V., Phys. Rev. D 58, 064023 (1998).

If these models exhibit LMD as claimed by BKL, 
what would it look like?

Berger, B. K. and Moncrief, V., Phys. Rev. D 62, 123501 (2000).

Problematical 2 + 1 numerics (for us) means that only qualitative 
signatures are reliable.

ds2 = e−2ϕ e−2Λdτ2 + eΛeab(x, z)dxadxb + e2ϕ
(

dx3 + βadxa
)2

(ea, βa) → (r, ω)

Berger, B. K. and Moncrief, V., Phys. Rev. D 58, 064023 (1998).
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A robust signature for local Mixmaster dynamics in 
simulations of U(1) symmetric cosmologies:

• The variable ϕ should oscillate with bounces at 
different times at different spatial points.

• The variable z should decay monotonically most of 
the time but will occasionally grow at some spatial 
point when a Mixmaster era ends.

• In the U(1) variables, most simulations validate the 
MCP view that ϕ oscillates due to bounces off two 
competing terms in the Hamiltonian (constraint).



  

directions

ϕ

Λ, z

V1 = 1
2 pω

2 e4ϕV2 ≈
1
2 (∇ω)2 eΛ−2 z−4ϕ

ϕ̇ 2

ϕ bounces in a local minisuperspace

Λ−2 z−4ϕ

⊥

Note that z, Λ, and ϕ are involved.
Local bounce rules may be developed using conservation 
of momentum.
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θ

“Quantitative” studies of T2 symmetric spatially 
inhomogeneous cosmologies with T3 spatial topology:

x

y

Polarized Gowdy: spatial axes are fixed
Generic Gowdy: orientation of x and y axes changes with time
General T2 symmetric: orientation of all spatial axes depends on time 



  

Gowdy models are both an arena for precision numerics and 
mathematically tractable creating a valuable synergy:

Einstein’s equations consist of wave equations for P and Q 
and constraints which may be solved for λ. The wave equations
may be obtained by variation of

where              . 

As  , the VTD solution (neglect spatial derivatives) is

H != 0

τ → ∞

ds2 = e(λ+τ)/2
(
−e−2τdτ2 + dθ2

)
+ eP−τ (dσ + Qdδ)2 + e−P−τdδ2

1

2H = π2
P + e−2P π2

Q + e−2τP,2θ +e2(P−τ)Q,2θ

1

P (θ, τ)→ v(θ) τ , πP (θ, τ)→ v(θ)

Q(θ, τ)→ Q0(θ) , πQ(θ, τ)→ π0
Q(θ)

1



  

Terms in the Hamiltonian act as potentials. For AVTD behavior 
of the model, these potentials must decay exponentially.

V1 = e
−2P

π
2

Q → e
−2vτ

(

π
0

Q

)2

v > 0requires              for consistency.

V2 = e2(P−τ) (Q,θ )2 → e2(v−1)τ (Q0,θ )2

requires              for consistency.v < 1

Thus the MCP predicts that the singularity is AVTD 
(at any spatial point) only if                               .0 ≤ v < 1



  

Competing Potentials in Equation for P

V2 = e
2(P−τ )Q,θ

2

V2(Z)

Z = P - τ

(P,τ −1)2

V1 = e−2PπQ
2

P

V1(P)

P,τ
2

Gowdy walls as 
Mixmaster MSS
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Numerical simulations show how  v is driven into
the range (0,1) by bounces off the potentials. 
A typical single spatial point is shown.

B.K. Berger, D. Garfinkle, Phys. Rev. D 57, 4767 (1998). 

Numerical simulations show how     is driven into the range (0,1)
by bounces off the potentials. A typical single spatial point is shown.
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The spiky features offer a challenging code test:



  

A.D. Rendall, M. Weaver, “Manufacture of Gowdy Spacetimes with Spikes,”
CQG 18, 2959 (2001)

But are understood mathematically:



  

ds
2

= −e
(λ−3τ)/2

dτ
2

+ e
(λ+µ+τ)/2

dθ
2

+e
−P−τ [dδ − (

∫ τ

Θ) dθ]2

General T2 symmetric spacetime:

where
Hamiltonian formulation:

Gowdy: κ = 0, πλ =
1
2

Θ = e
(λ+2P+3τ)/2

e
µ/4

κ

H =
π2

P

4πλ
+

P,2θ e−2τ

4πλ
+

π2

Qe−2P

4πλ

B.K. Berger, J. Isenberg, M. Weaver, PRD 64, 084006 (2001)

H = H0 + Hsmall + Hkin + Hcurv + Htwist

+eP−τ [dσ + Qdδ +

(
∫ τ

(QΘ) − Q

∫ τ

Θ

)

dθ]2

+
Q,2θ e2(P−τ)

4πλ
+ σκ2πλe(λ+2P+3τ)/2



  

H = HK + HC + HM

=
1

4πλ

π P
2+ e−2PπQ

2( )

+
1

4πλ

e−2τP,θ
2 +e2(P−τ )Q,θ

2( )
(λ +2P+3τ ) / 2

πλ e+

Twisted Gowdy  (with Isenberg, Weaver):

K2

G

twist potential

Twisted Gowdy 
walls as Mixmaster 
MSS



  

The Gowdy potentials restrict the range of w. 
However, if      

P (θ, τ)→ w(θ) τ , πP (θ, τ)→ w(θ)

Q(θ, τ)→ Q0(θ) , πQ(θ, τ)→ π0
Q(θ)

λ(θ, τ)→ −w(θ)2τ , πλ(θ, τ)→ π0
λ(θ)

1

P (θ, τ)→ w(θ) τ , πP (θ, τ)→ w(θ)

Q(θ, τ)→ Q0(θ) , πQ(θ, τ)→ π0
Q(θ)

λ(θ, τ)→ −w(θ)2τ , πλ(θ, τ)→ π0
λ(θ)

w =
v

2π0
λ

1

V3 = κ
2
πλ e

λ+2P+3τ
→ κ

2
πλ e

−(w+1)(w−3)τ

−1 < w < 3

The VTD solution is

will grow exponentially.     
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w0 = 2° w

Bounce type

Kinetic

Curvature

Twist

Curvature-Twist

Kinetic-Twist

Bounce rule

w0= ° w

w0= w+ 3
w ° 1

w0= w ° 5
w ° 1

w0 = 3° w
w+ 1

Predictions for the next value of w after a bounce using
conservation of momentum with exponential potentials:

–

–

–

–
–

–

w
′
= −w

w
′
= 2 − w

w
′
=

w + 3

w − 1

w
′
=

w − 5

w − 1

w
′
=

3 − w

w + 1
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Open question

• Twisted Gowdy models are a subclass of U
(1) symmetric models.

• Twist bounces are understood in terms of 
non-diagonal mixmaster models.

• All features of U(1) simulations are 
understood in terms of diagonal mixmaster.

• Where are the twist bounces in U(1) 
models?

B.K. Berger, CQG 21, S81 (2004)



  

e
−2z = e

Λ + e
−Λ

(

1 +

∫

τ

Θ

)2

To identify the U(1) variables, we must use the gauge                  
                              rather than                 which was used in the U(1) 
simulations where                       .

N = e
Λ

N = e
−µ/4

e
Λ

e
µ/4

= 2πΛ

2ϕ = P − τ

Λ =
λ

4
+

P

2
+

3τ

4
+

µ

4

We find

  

To identify the U(1) variables, we must use the gauge
N = e�π/ 4 e � rather than N = e� which was used in
the U(1) simulations where eπ/4 = 2� � .

We Ønd
ϕ =

P � �

2

� =
� + 2P + 3� + π

4

e � 2z = e � + e��
�

1 +
∫ �

� )2

The twist potential is

V3 =
1
8
p2

z +
1
2
p2

xe4z.

−

Λ

N = e
µ/4

e
Λ N = e

Λ

find

e
−2z = e

Λ + e
−Λ

(

1 +

∫

τ

Θ

)2

!

" !

µ
"!

µ

The twist potential is
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Use a more general gauge condition:



  P.R. Brady, J.D. Smith, Phys. Rev. Lett. 75, 1256 (1995).
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Is the black hole horizon analogous to boundary conditions, i.e. a 
global effect, whose influence dies out as the singularity is 
approached? 



  

Conclusions

• There is strong evidence from numerical 
simulation (and also mathematical theorems) 
that generic collapse leads to spacelike 
singularities dominated by local dynamics.

• Asymptotically, the local behavior closely 
follows the Kasner or Mixmaster solution.


