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SINGULARITIES , SYMMETRIES
' & HIGHER ORDER CORRECTIONS

F

5
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SUMMARY

e Generalize BKL approach to arbitrary matter coupled
gravity systems, and interpret it in terms of ‘small
tension expansion’ in spatial gradients.

e Exhibit link between BKL dynamics and infinite di-
mensional hidden symmetries of (super)gravity.

A new twist to the BRL storv...

e What can we learn about the possible symmetries of
a unified theory from an analysis of Einstein's field
equations and their solutions in the vicinity of a space-
like (cosmological) singularity?
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BKL: THE BASIC PICTURE

I

Singularity Theorems (S.W. Haw H. Penrose) predict the
emergence of space time singularities under certain generic conditions,
but make no specific prediction about their precise nature.

In its most general form this problem is probably too difficult, but:

can we characterize and understand the behavior of the gravita-
tional field at least in the vicinity of a spacelike singularity ?

spacelike singularity «» causal decoupling
spatial gradients (9;) < time derivatives (8;)

If correct: in the limit ¢ + 0% Einstein’s equations reduce to a con-
tinuous superposition of ordinary differential equations, one for each
spatial point # € £ — drastic simplification via effective reduction to
one (time) dimension!

(cf. ‘horizon problem’ of inflationary cosmology)

KASNER SOLUTION (1926)

Einstein’s equations for the gravitational field:
1 .
Ryu - 5_(],“,R = STrG)V,[‘“,

: = simplest solution depending only on one coordinate
(in a suitable gauge):

ds® = —dt* + 71 dz? 4 2P dy? L 429342

where the K as X ts p; must satisfy
Pips ey = 1
m+ptps = 1

= solution is hemogeneous (= invariant under spatial translations),
but not isotropic (= not invariant under spatial rotations).

Kasner solution is singular on the spacelike hypersurface ¢t = (

— models Big Bang Singularit

Because one of the Kasner exponents is negative, e.g.
P <0

the observer is simultaneously squashed and stretec hed, but such that
spatial volume V o 2 —3 0.

’ Idea: Causal decoupling — near t = () solution behaves like Kasner
| solution at each spatial point z € £, but with z-dependent Kasner ‘
exponents p; = p;(z) and controllable corrections. ;
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STABILITY VS. CHAOS

B L: Test stability of ansatz with homogeneons curved
spatial geometry

—» substitute Kasner-like ansatz into Bianchi-type solution and check
whether spatial gradients remain small or not.

Because pi < 0 for some 4, approximation breaks down eventually for
pure gravity (and spacetime dimension D < 10)

'
P e Kaener beunce:
¢
Pe — e ('P“ PZJP,Q)" (PfJle}P_;)
w-/
. W—Mﬂf
Dynamics = sequence of I isi0r tights and Kasne

Two kinds of behavior are possible as t — (+;
1. infinite number of bounces +—s ¢laoe

2. finite number of bounces — monotonic Kasner-
'

like m-;;m tor for sufficiently small £ and 0 < ¢ < €
(ie. AVD= asymptotically velocity dominated)

GENERAL CASE

But: Einstein’s equations in their general form are far more compli-
cated — must take into account all other degrees of freedom:

e spatial inhomogeneities (z dependence)
o off-diagonal components of metric
e matter fields (dilatons, gauge fields, etc.)

General ansatz for metric:

d
ds? = —dt? + Z e~28%ga o gu

a=1
Here 6® parametrizes off-diagonal components of metric.

The diagonal components (scale factors) 3% will now be re-interpreted
as coordinates in a fictitious d-dimensional space, such that the time
evolution of the metric can be thought of as a motion in S-space.

Aim: construct effective low energy theory for diagonal degrees of
freedom (3!, ..., %) by ‘integrating out’ off-diagonal metric compo-
nents, matter fields, spatial inhomogeneities,...!

In this description, the Kasner solution corresponds to a free rela-
tivistic motion in S-space:
8°(7) = ' = B8
with the new ‘Zeno-like’ time coordinate:
= —logt (thus 7= +00 & t 5 0™)

The previous conditions on the Kasner exponents are now interpreted
as a relativistic dispersion relation in S-space:

GunB* 8 = 3 (") - (Z:&*ﬂ)2 =0

NB: the S-space metric (G, has ‘ e : !
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Result (I): modulo some technical assumptions the limit t — 0% In the limit ¢ —+ 0% & 3% — +o0 exponential potentials become
vields a radical simplification: the dynamics takes place only in the infinite potential barriers (dominant contributions indexed by A’):
diagonal metric degrees of freedom, whereas all other degrees of free-

lim 3 ea(P,Q)e "~ 3 0 (—wa(B))
A A

dom get asymptotically “frozen” and manifest themselves only via Broe
certain effective potentials which modify the free Kasner motion. with

0 ife <0
On(z) =

too ifae>0
NB: For proper derivation, use hyperbolic coordinates v*

; + (1 .
8% = py® A = —1 Thus, for ¢ — 07 ( ‘ i re):
and consider limit p? — .
E.g., for pure gravity in /) = 4, hyperbolic coordinates parametrize / 4 .
the Poincaré disk D = {2 € C|27 < 1} € C with metric >0
_—

dzdz

:1—ﬁ2|"2 -/’/

Conclusion: for small ¢ the equation of motion in S-space becomes

GaB'B+V(B) =0

do?

FRARAAR R A RL R RARALRLLY

with the ‘effective potential’
That is, soft walls (=exponential potential barriers) become

V{(3) ~ ZCA(P,Q)e_‘”-"(a) (%) sharp walls in the limit ¢+ — 07. The walls associated with
A w4 are the hyperplanes in 3-space defined by
where the coefficients ¢4 depend on the remaining degrees of freedom
(off-diagonal metric components, matter fields, spatial curvature,...) wa(B) =0
Crucial properties of effective potential (%): and partition S-space into wedge-like regions.

1. Non-negativity of the leading terms (indexed with A’):
CA’(.P, Q) > 0

2. Exponentials depend linearly on the 3's, therefore we can think
of the w4 as linear forms:

wa(B) = Gapw Bb
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WALLS

Svimetr entrifugal = (from eliminating off-

shell metric components):
wioh(B)=8"— B for a>b

2. Unrvature | alls (from eliminating
spatial inhomogeneities):

wi(B) =28+ 3

m#ab,c

I= (from eliminating electric or magnetic p-
form degrees of freedom):

wlletrio(8) 1= gU 4. g

u,(mag:rhc) (6) s Z ﬁm

m#al,..,ap

All these walls are timelike, i.e. the associated hyperplanes
have spacelike normal vector.

— Reflections against these walls belong to orthochronous
Lorentz group SO*(1,d—1) in S-space, and sometimes (but
not always) to a discrete subgroup thereof.

NB: Only known spacelike walls from cosmological con-
stant = bounce reverses time direction in 8-space.

(and walls from ‘m'slner order
curvature terms )

In summa the whole dynamics of Finstein’s theory and its generaliza-
tions in the vicinity of a spacelike singularity reduces to a relativistic
billiard in J-space, whose “cushions” are defined by the sharp wall
potentials G4,

Artist’s view of billiard dynamics in 3-space:

N

o If billiard wedge is contained in forward light cone: infinitely
many reflections .igamst the walls (cushions) of the billiard
= chaotic osecills ns of the metric &= BKL chaos

o If wedge extends beyoud light cone: only finitely many reflec-
tions «—» Kasne behavior near the singularity

¢ Equivalent description in terms of hyperholic billiard on mani-
fold of constant negative curvature (finite volume ¢ chaos).

v
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Example: pure (Einstein) gravity in D = 4
Very convenient method to check whether a given model of matter
coupled gravity exhibits chaos or not! The relevant Lie algebra is t

APE; with Cartan matrix

he rank-3 hyperbolic Kac- Moody algebra

Examples:
. ) . . L 2 -1 0
¢ Chaotic behavior for Einstein gravity in D=4 (BK1/) Aj=|-1 2 _9
* Kasner-like (regular) behavior for gravity in 12 > 10 dimensions 0 -2 2
or gravity with a dilaton for all D. and Dynkin diagram
¢ Chaos can be reinstated by electric or magnetic p-form walls
o X It

BUT.. o- ———p9

Result (I1): AN maximally supersymmetric candidate models for
a mathematically consistent unfied theory (type IIA and type 11B
superstrings, heterotic string, D =11 supergravity) exhibit BKL chaos with two centrifug; (or symmetry walls) . and .., and one
in the vicinity of the initial singularity. vl (or curvature wall)

Regular subalgebras of AE3 with known action on restricted classes
of solutions of Einstein’s equations:

Symmetry from Chaos...... ¢ az: Matzner-Misner SL(2, )
* ay: Ehlers SL(2,R)

Result (III): For many theories of interest, the B-space of scale * {on, azk: spatial SL(3.R) rotations

factors can be identified with the '+ ¢bra of some 1ndefine ¢ {as, a3}: Geroch group (with Lie algebra At
vody algebra. The wedge, in which the billiard takes place, is
identified with the ' vnber of this algebra.
The ALy Weyl group is PGL(2,Z) enkel] =
¢ Timelike walls ¢ normal vectors = real roots Billiard takes place in a fundamental region
Dominant walls < normal vectors = simgple roots F=D/PGL(2,7)
Kasne s = We flecti i
¢ Kasner bounces Weyl reflections (= ) Walls behind walls behind walls... = Weyl images of dominant walls,

¢ Chaotic oscillations if Kac-Moody algebra is hyperbolic
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But what is an indefinite Kac Moody algebra?

True answer: nobody knows...

Ssay]
O} =
3

b= a

“The theory of Kac-Moody algebras is o disaster...”

<

Recursive definition: Lie Algebra g(A) defined by generators and
relations (Chevalley Serre presentation) with Cartan matrix Agyr

les, f3) = 8ijh; | [hiyej] = Aije; ,  [hi, fj] = ~Ai; £

(ad e;) 14 (ej) = (ad f;)1~Aus (fj)=0
where {&;} span Cartan subalgebra b (CSA): [hy, hi]l = 0.

Thus, a Kac Moody algebra generalizes the algebraic structures known
from the analysis of the rotation group and its representations in
quantum mechanics (h ~ J3 | e ~ J* f~J7). Always:

g(A)=n"ohant

For A finite (= positive definite), recover Cartan’s classification of
finite dimensional simple Lie algebras.

For A affine (= positive semi-definite), g(

A) is infinite dimensional
and can be realized via a current algebra i

n one dimension,

For A indefinite, Cartan matrix has both positive and negative eigen-
values <= Lorentzian metric in the CSA <= Lorentzian metric in
Wi ‘ superspace of 3’s!

A hyperbolic © A indefinite and regular subalgebras affine or finite.

<« RpiavabBusdnsg (vwixvw

In this case the number of linearly independent raising and low-
ering operators ‘explodes’, and even more than 35 years after their
discovery we still don’t know much about these algebras
even possible to write them down explicitly!

wuqebre D10quadhy papunxs A vwixvw
ALIAVYDY3dnS SIL ¥ VI

..... it is not
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M THEORY PERSPECTIVES?

An alternative view: space-time as an elastic medinm
o2
= ——— [d”r/=gR
167G N / Vg
- /dffd“x[pb(a,,h)z —'rb(Vh)?] -
for small perturbations of the background metric

Guv = Nyw + chyy

=3 Hj as a zera tenston Hmit' 7, — 077

A similar limit has been considered in string theory
(though without much success so far .....)

(f’mposal: String theory, as known today, is only the\
spontaneously broken version of some other and more
fundamental pre-geometrical (and background indepen-
dent) theory exhibiting a much larger symmetry. The
‘symmetric phase’ of M theory could well he related to

\the zero tension limit of string theory. y.
A first indication (I UHE): infinitely many linear relations

between string scattering amplitudes for tensionless bosonic string
(ie. for o' — oo, where all string excitations become massless).




