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Introduction and apologies:

Spherically symmetric space-times include Schwarzschild and therefore the 
singularity.

They are the “next obvious thing” to try with loop quantum gravity after homogeneous
space-times.

Work in progress, recent, we do not have results for the singularity…

Models always involve a tradeoff: using special features simplifies treatment but
lessens the value as lessons for the full theory.

Things get unexpectedly complicated, we may need to use novel techniques not 
widely accepted.

It turns out that one can do a more traditional treatment using a special feature of
spherical symmetry.



Previous work on the spherical symmetry with the traditional variables for canonical
gravity: Berger, Chitre, Moncrief, Nutku (1973), Lund (1973), Unruh (1976), 
and the definitive work (in vacuum): Kuchař (1994).

Kuchař does not simply use symmetry-reduced variables and proceed to a Dirac
quantization, but makes a careful choice of canonical variables such that the
quantization is immediate and the only dynamical variable is the mass. In this
sense it can be seen as a “microsuperspace quantization”. 

Such a quantization has so little in common with the full theory that we cannot learn
anything about, for instance, the use of loop quantization or singularity elimination.

We would like to use less information about the model in question, i.e. just impose
spherical symmetry and then proceed with the usual quantization program. We will
see that this complicates things significantly. 

Spherically symmetric canonical quantum gravity:



Suppose one considers the usual spherical (spatial) metric,
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And a appropriately spherical conjugate momenta. One will be left with 
one diffeomorphism constraint Cr and a Hamiltonian constraint H. They will satisfy
the usual constraint algebra,
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Remarkably, even this simple model has “the problem of dynamics” of 
canonical quantum gravity. This problem is absent in homogeneous cosmologies.

Midi-superspaces: things complicate



In loop quantum gravity, in addition to the previous constraints there is a
Gauss law. Viewed as a quantum constraint, the basis of solutions to Gauss’ law
is given by the spin network states. This space is endowed with a natural inner
product and given certain assumptions is unique (LOST theorem).

In such space diffeomorphisms are represented by an operator, but the space is
not weakly continuous, i.e. infinitesimal diffeomorphisms do not exist. Therefore one
does not have a representation for the quantum diffeomorphism constraint, although
one can construct diffeomorphism invariant states and therefore construct the kernel
of the constraint. 

This suggests one cannot find a representation of the quantum Hamiltonian 
constraint, since {H,H}~gC. 

One can find a representation of the quantum Hamiltonian constraint acting on the
space of diffeomorphism invariant states where {H,H}=0  (Thiemann’s QSD (1996))

The latter construction appears to fail for technical reasons in spherical symmetry 
(Bojowald, Swiderski (2006)). 

The problem of dynamics, brief reminder
(Discussion oversimplified, see T. Thiemann “Insider’s view” paper or Giesel and Thiemann’s AQG papers 
for a more careful discussion)



This problem has led several of us to seek alternatives to the Dirac quantization 
procedure to apply in the case of gravity. An example of this point of view is the 
“master constraint” program of Thomas Thiemann and collaborators (2004-present).

Our point of view is to attempt to define the continuum theory as a suitable limit
of lattice theories that do not have the problem of the constraint algebra but 
that nevertheless provide a correspondence principle with the continuum theory.
In a nutshell one can say that we wish to do for gravity what lattice QCD did for QCD.
Unfortunately, when one discretizes complicated theories with constraints, usually
the resulting discrete theories differ significantly from the continuum one (even in
QCD, if not done carefully). 

The constraints that are  first class in the continuum  become second class in the
discrete theories. 

They can be handled by the Dirac procedure by determining the Lagrange multipliers.
The resulting theories therefore are considerably different from the continuum ones.
We explored this approach  for some time calling it “consistent discretizations”.

Unfortunately it was never clear that one could control the continuum limit. The 
equations that determine the Lagrange multipliers are not guaranteed to have 
real solutions.

Alternative proposals



To tackle this we proposed a new type of discretizations called  “uniform discretizations”
and  they are defined by the following canonical transformation
between instants n and n+1,

Where A is any dynamical variable and H is a “Hamiltonian”. It is constructed
as a function of the constraints of the continuum theory. An example could be,

(More generally, any positive definite function of the constraints that vanishes
when the constraints vanish and has non-vanishing second derivatives at the
origin would do) Notice also that parallels arise with the “master constraint 
program”.

These discretizations have desirable properties. For instance H is automatically
a constant of the motion. So if we choose initial data such that H<ε, such
statement would be preserved upon evolution. 



So if we choose initial data such that H<ε then the constraints remain bounded
throughout the evolution and will tend to zero in the limit ε->0. 

We can also show that in such limit the equations of motion derived from H
reproduce those of the total Hamiltonian of the continuum theory. For this
we take H0=δ2/2 and define ∑
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The evolution of a dynamical variable is given by

One obtains in the limit,

Constraint surface

Graphically,

Initial data



The constants of motion of the discrete theory become in the continuum limit
the observables (“perennials”) of the continuum theory. Conversely, every 
perennial of the continuum theory has as a counterpart a set of constants of
the motion of the discrete theory that coincide with it as a function of phase space
in the continuum limit.

We therefore see that in the continuum limit we recover entirely the classical
theory: its equations of motion, its constraints and its observables (perennials).

Notice that in the proof of the previous page we assumed the constraints
are first class. If they are second class the same proof goes through but one has
to use Dirac brackets. This is important for the case of field theories where 
discretization of space may turn first class constraints into second class ones

In this case one has several options: either one works with Dirac brackets, which
may be challenging, or one works with ordinary Poisson brackets but takes the
spatial continuum limit first. It may occur in that case that the constraints become
first class. Then the method is applicable and leads to a quantization in which
one has to take the spatial continuum limit first in order to define the physical 
space of states. 
But probably the most promising avenue is to work with Poisson Brackets and
stay with a sufficiently good discrete approximation of the continuum theory.



To quantize the discrete theory one starts by writing the classical evolution 
equations 

One then defines a kinematical space of states Hk as the space of functions
of N real variables ψ(q) that are square integrable. We define operators

such that, ˆoperator unitary  a and usual as ˆ  ,ˆ UPQ

This guarantees we will recover the classical evolution up to factor orderings,
providing a desirable “correspondence principle” with the classical discrete
theory.

Quantization:
The discrete theories have no constraints, therefore many of the conceptual 
problems are bypassed.



At a classical level, since H is the sum of squares of the constraints, one has that
the constraints are satisfied iff H=0. Quantum mechanically we can therefore
impose the necessary condition Uψ=ψ in order to define the physical space of
state Hphys. More precisely, states ψ in Hphys are functions in the dual of a subspace of
sufficiently regular functions (ϕ) of  Hkin such that

This condition defines the physical space of states without having to implement
the constraints of the continuum theory as quantum operators. We see similarities
with the “master constraint” of Thiemann and collaborators.

The operators U allow to define the “projectors” onto the physical space of 
states of the continuum theory by,
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We have analyzed several examples up to now:

Mechanical systems with  N  Abelian constraints and  in particular 
the formulation of 2+1 gravity of Noui and Perez. Here the method reproduces
the usual Dirac quantization and the group averaging approach.
We also studied the case of a finite number of non Abelian constraints (for
instance the case of imposing the generators of SU(2) as constraints). In this
case we proved that the method reproduces the results of the standard Dirac
quantization and the group averaging approach.

In the case of a non-compact group of constraints, like SO(2,1), the discrete 
theories exist and contains very good approximations of the classical behavior 
but the continuum quantum limit does not seem to exist. This parallels 
technical problems associated with the  spectrum of H not containing zero 
that appear in the master constraint and other approaches as well.
(Gomberoff, Marolf IJMPD 8, 519 (1999); Dittrich, Thiemann CQG 23, 1067 (2006))

The last example suggests a point of view: the continuum limit is an achievable
goal in the classical limit (for some states), but one could work with the discrete 
quantum theories close to the continuum limit as the fundamental framework.
Klauder NPB 547, 397 (1999); Dittrich, Thiemann CQG 23, 1089, (2006)

M. Campiglia, C. Di Bartolo, R. Gambini, JP Phys. Rev. D 74, 124012 (2006)



Spherical symmetry (at last!)

Previous work with the new variables, Bengtsson (1988) and Bojowald and Swiderski
(2005, 2006). Choose connections and triads adapted to spherical symmetry,

It simplifies the constraints if one introduces a “polar” canonical transformation in
the variables Aϕ, Pϕ,β,Pβ

To fix asymptotic problems (Bojowald, Swiderski), one does a further canonical
change,

.,,,, ηϕ
ϕ η PEAEA x ,x pairs canonical the to Leading

Λ’s are generators of su(2).



To simplify matters further, we will fix the spatial coordinate gauge. This 
eliminates the diffeomorphism constraint, but still leaves a Gauss law and
a Hamiltonian constraint with a first class algebra of constraints with structure
functions, therefore still a challenging problem.

The choice is Ex=a at the horizon, which in turn puts the latter at x=0. The 
variable a is a dynamical variable that is related to the mass of the space-time 
a=M/2. One solves D=0 for Ax and substituting in H one has an equation for the
pair Aϕ,Eϕ.

Finally, one is left with the following form for the constraints,



The Hamiltonian constraint becomes,

And the constraint algebra is,

So the model, although simplified, is still quite challenging (has structure functions
in the constraint algebra). So in principle we cannot treat it with traditional techniques, 
we  could use the “uniform discretizations”.

But it turns out that for this example one can introduce a trick that allows for
the traditional treatment. Dividing the constraint by Eϕ turns the Hamiltonian 
constraint Abelian! We will then see that one can discretize it in such a way that
it remains first class upon discretization. Then one can quantize the discrete 
theory in the traditional way. But first let us construct a suitable loop 
representation for these models.



Loop representation for the spherically symmetric case:

Manifold is a line. “Graph” is a set of edges,            . The only variable that behaves
as a connnection on the line is Ax. The variables η and Aϕ are scalars, so in the loop
representation one uses “point holonomies” to represent them.

To avoid presenting too many equations, I will write the states for the “gauge
fixed” case we introduced. There the only variables in the bulk are Eϕ and 2γKϕ=Aϕ

Volume of an interval I



And one can do the “Thiemann trick” (calculation omitted) for the non-polynomial
portion of the Hamiltonian constraint (as in the full theory and LQC), and that
the inverse of the triad is a bounded operator,

“Transverse point holonomies” and triads are well defined operators,



With this one can represent the Abelian Hamiltonian constraint in the loop representation.
We start from a classical discretization that is written in terms of quantities that 
are easy to promote to operators in the loop representation (i.e. replace connections
by “small holonomies”, etc)

It turns out that it is relatively easy to solve the constraint in the connection 
representation. One rewrites it as,

And imposing it as a quantum operator leads to states,

And f is an explicit function of
elliptic integrals.



The bottomline is that one recovers the same quantization as Kuchař, one has
a wavefunction that depends on the mass C(a,τ), and imposing the constraint on
the boundary one gets,

So one is left with only a function of the mass C0(a) as the wavefunction of the
theory, with no dynamics.

How does the constraint look like in the loop representation? Start from classically
rewriting the constraints

as Om =1. Then the quantum version of O is,



This can be immediately represented in the loop representation as,

Notice the parallels with the expression that Abhay Ashtekar wrote in his talk 
for the Loop Quantum Cosmology case.

This is suggestive, since it might imply a similar resolution for the Schwarzschild
singularity as one had for the cosmological one. However, detailed calculations 
in horizon penetrating coordinates would be needed to confirm this.

The above recursion relation can be explicitly solved and one can show that
the solution is the “loop transform” of the solution we found in the connection
representation,

r identifies superselection sector.



Use of uniform discretizations:

What if we had not made use of the trick of Abelianizing the constraints? Then
the only approach we know is to use the “uniform discretizations”. It turns out that
one can explicitly construct a discretization of the constraint that exhibits some of the 
challenges that one expects in the full theory. 

Namely, one constructs the evolution operator (exponential of the sum of the 
square of constraints), and  one can estimate  a bound for  the minimum eigenvalue
of the exponent, using the states of the Abelian model,

The operator therefore does not have a quantum continuum limit, 
ε->0, lPlanck finite. On the other hand it does have a classical continuum limit,
ε->0, lPlanck->0.
Solving the model becomes a (hard) problem in quantum mechanics, akin
to solid state physics. It will have to be tackled via variational, perturbative or
numerical methods.

Significant
ambiguity



Since we cannot take the quantum continuum limit, we can ask, what is the 
minimum eigenvalue of H? We can again estimate an upper bound for this by 
evaluating <Ψ|H|Ψ> with the states we constructed in the Abelian model. If one
does that one finds that

So the discrete theory has a minimum value for the length. For a Solar sized mass,
The eigenvalue of H is 10-80. So the discrete theory approximates very well
the continuum one.

As in LQC, one expects the value of the parameter of the “transverse point 
holonomy”, ρ, to take a finite minimum value,

If one acts with this holonomy on a spin network state, one adds an element
of volume, Planck

2)(4 laxV v +=∆ πρ

If one considers the volume of a shell of width ∆x asymptotically one has N
elements of volume per shell,
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One last intriguing observation:



Summary:
• One can study spherically symmetric space-times using 

loop quantum gravity.
• One needs to use special features of spherical symmetry 

to apply the traditional Dirac quantization technique.
• The setup is ready, we need to extend it to horizon 

penetrating coordinates to make statements about the 
singularity.

• Without using special tricks the problem is 
hard, and it offers a promising arena to test new ideas 
for handling the problem of dynamics in canonical 
quantum gravity, like the “uniform discretization”
approach.


