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Slow dynamics in glasses

M.D.Ediger

(2000)

(a) At the glass transition, the system “falls out” of equilibrium.

(b) Viscosities and relaxation times increase dramatically as a material
cools towards Tg.
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Material in a glassy state
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The two experiments give different results

TTI Broken: AGING !!
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The Problem: Dynamical heterogeneities
Colloid: confocal microscopy (Weeks et al., Science 287, 627 (2000))

Supercooled

liquid, the

fastest 5% of

the particles are

highlighted
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The Problem: Dynamical heterogeneities
PVAc: dielectric fluctuations (Vidal Russell & Israeloff, Nature 408, 695

(2000))

Polymer glass,

T = Tg − 9K,

transient
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strongly
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region under tip

Heterogeneity

lifetime ≈

relaxation time
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Motivation

• Experiments show spatially heterogeneous dynamics.

• We don’t have a theory of spatial fluctuations in glassy dy-

namics

Outline

1. Experiments show that glasses are out of equilibrium: age-

dependent effects (“Physical aging”) and “FDT violations”.

2. Symmetry under time reparametrization. Goldstone mode:

space dependent ages in glassy systems.

3. Numerical evidence in models of spin glasses and structural

glasses.

6



Outline

1. Experiments show that glasses are out of equilibrium: age-

dependent effects (“Physical aging”) and “FDT violations”.

2. Symmetry under time reparametrization. Goldstone mode:

space dependent ages in glassy systems.

3. Numerical evidence in models of spin glasses and structural

glasses.

7



Fluctuation - response in spin glasses
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A toy example: Mean Field p-Spin Model

Cugliandolo and Kurchan, PRL 71, 173 (1993)

• Dynamical equations for correlation and response (µ ≡ pβ2/2):

∂C(t, t′)

∂t
= − (1 − pβ E(t)) C(t, t′)+2R(t′, t)

+µ
∫ t′

0
dt′′ Cp−1(t, t′)R(t′, t′′)

+µ (p − 1)

∫ t

0
dt′′ R(t, t′′)Cp−2(t, t′′)C(t′′, t′)

∂R(t, t′)

∂t
= − (1 − pβ E(t)) R(t, t′)+δ(t − t′)

+µ (p − 1)
∫ t

t′
dt′′ R(t, t′′)Cp−2(t, t′′)R(t′′, t′)

• Reparametrization invariance: in the limit of slow dynamics, the
dynamical equations are still satisfied if C(t, t′) and R(t, t′) are re-
placed by:

C̃(t, t′) = C(h(t), h(t′)) R̃(t, t′) = R(h(t), h(t′))
dh

dt′ 10



Can we understand dynamical heterogeneities?

A possible explanation: the glassy material is aging, but the ages are

fluctuating in space.

xA xB
xC

time
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Can we understand dynamical heterogeneities?

Equilibrium state

of ferromagnet

m

Rotations Rθ leave

free energy F

unchanged

Minimization of F[~m(~r)]
selects the (mean field

approx.) physical
magnetization

Nonquilibrium dynamics of spin glass

C

χ

RG in time: reparametrizations t → h(t)

leave “dynamical action” S unchanged

(irrelevant terms break symmetry at finite times)

(C.Chamon, M.P.Kennett, H.E.C.,

L.F.Cugliandolo, PRL 89, 217201 (2002))

Minimization of S[(C~r(t, tw), χ~r(t, tw))] selects the
(mean field approx.) physical evolution of (C, χ)
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Can we understand dynamical heterogeneities?

Equilibrium state

of ferromagnet

Fluctuations with high

probability (small δF):

Rθ(~r)

(direction of the

magnetization varies

smoothly in space)

“magnons”

Nonquilibrium dynamics

of spin glass

Fluctuations with high

probability (small δS):

t → h~r(t)

(age of the material varies

smoothly in space)

(H.E.C., C.Chamon,

L.F.Cugliandolo, M.P.Kennett,

PRL 88, 237201 (2002))
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How do we test this theoretical framework?

1. Measure C~r(t, tw) and χ~r(t, tw) at fixed, large (t, tw).

2. See where the points accumulate in the (C, χ) plane.

C

χ

OK!!

C

χ

Doesn’t work!!
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Probability distribution of local correlations: ρ(C~r)

(with C. Chamon, L. Cugliandolo, J. Iguain, and M. Kennett: PRL 88, 237201

(2002) and PRB 68, 134442 (2003))

If C0(t, tw) ≈ C0(h(t)/h(tw)) (for example, h(t) ≈ t in 3DEA) then:

t → h~r(t) = eϕ~r(t)

C~r(t, tw) = C0(h~r(t)/h~r(tw)) = C0(exp(ϕ~r(t) − ϕ~r(tw)))

t

ϕ (t ,r)

ϕ (t,r)

ϕ (t,r)

r

ϕ (t ,r)

w

− w

• Fluctuating ϕ~r(t)

• Time

reparametriza-

tion invariance

• ⇒ ϕ~r(t) − ϕ~r(tw) ≈

ln
(

h(t)
h(tw)

)

+

√

a + b ln
(

h(t)
h(tw)

)

Xr
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Testing the
theoretical
framework
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3D short-range ±J spin glass Monte Carlo

V = 643, T = 0.72Tg, tw = 4 × 104 MCs

t/tw = 1.00005,1.001,1.06,2,8,32
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ρ(C~r) collapses with t/tw

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5 1

ρ(
C

r)

Cr

V=323

tw = 4 104, ..., 6.4 105

t/tw =  2 →
t/tw =  4 →
t/tw =  8 →
t/tw = 16 →
t/tw = 32 →

36 samples
T = 0.72 Tg

18



Noise-noise spatial correlations: exponential decay

RG-irrelevant ⇒ expect finite correlation length

symmetry-breaking terms (→ ∞ for infinite t, tw).

B(~r, t, tw) ≡ 〈δC~ri
(t, tw) δC~ri+~r(t, tw)〉~ri
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tw = 104 MCs, V = 323, T = 0.72Tg, 64 disorder realizations
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Correlation length ξ(t, tw) → ξ(ttw)
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Outline
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Structural glass simulations

• 80:20 binary Lennard-Jones mixture, 8000 particles. Thermalized

at Ti = 5.0, time origin at instantaneous quench to Tf = 0.4 (be-

low Tg ≈ 0.435). Evolves for up to 100000 LJ units (i.e. ∼ 10−8s)

after quench. β relaxation time is of the order of 1 LJ unit. Re-

peated for 250 to 4000 independent runs (depending on timescale).

• Divide the system in regions, and measure one point, two time

quantities for each region.

Cpart
~r (t, tw) ≡ 1

N (V~r)

∑

~ri(tw)∈V~r

cos(~q · [~ri(t) − ~ri(tw)])

Obtain the probability distributions ρ(Cr) for the local values.

• Use the global intermediate scattering function

Cglobal(t, tw) ≡ 1
N

N
∑

i=1
cos(~q · [~ri(t) − ~ri(tw)])

to quantify how correlated the system is between times tw and t.



Approximate collapse of ρ(Cr) at constant Cglobal(t, tw)
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Distribution of one-dimensional displacements ρ(∆x)
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Dynamical correlations: densities

(Lačević, Starr, Schrøder, Glotzer J. Chem. Phys 119, 7372 (2003))

w(r, t, tw) = 1 if particle at r has moved < avib
= 0 otherwise

g4(r, t, tw) = spatial correlation of w(r, t, tw)

ξ4(t, tw) = correlation length for g4(r, t, tw)

χ4(t, tw) = dynamic density susceptibility

∝
∫

d3r g4(r, t, tw)
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Scaled χ4 and ξ4 depend only on Cglobal(t, tw)
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Summary

• RG in time : In short-range spin glasses, the dynamical action is invariant under
global time reparametrizations (t → h(t)) at long times.

• Goldstone modes (age fluctuations) are high probability modes. These modes
control the fluctuations in the aging dynamics.

• Tests in MC simulations of a 3D short-range spin glass model:

– The distribution of (C~r, χ~r) is concentrated on a fixed χ(C) curve.

– C0(t, tw) ≈ C0(t/tw): i) the distributions of C~r collapse for fixed t/tw

– Irrelevant terms weakly break invariance at finite times: “Goldstone modes”
acquire mass m(t, tw).

• Tests in MD simulation of a simple structural glass model:

– Probability distributions of local two-time quantities like Cr and ∆x approx-
imately collapse at fixed Cglobal(t, tw).

– Scaling of 4-point density correlation χ4(t, tw) ≈ χ4
0(tw)φ(C(t, tw)), and cor-

relation length ξ4(t, tw) ≈ ξ4
0(tw)ϕ(C(t, tw)).


