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Slow dynamics in glasses
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(a) At the glass transition, the system “falls out” of equilibrium.

(b) Viscosities and relaxation times increase dramatically as a material

Cools towards Tj. )



Material in a glassy state
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The two experiments give different results

TTI Broken: AGING 1



The Problem: Dynamical heterogeneities
Colloid: confocal microscopy (Weeks et al., Science 287, 627 (2000))
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he Problem: Dynamical heterogeneities
PVAC: dielectric fluctuations (Vidal Russell & Israeloff, Nature 408, 695

(2000))
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Motivation

Experiments show spatially heterogeneous dynamics.

We don’t have a theory of spatial fluctuations in glassy dy-
namics

Outline

. Experiments show that glasses are out of equilibrium: age-
dependent effects (‘““Physical aging”) and “FDT violations”.

. Symmetry under time reparametrization. Goldstone mode:
space dependent ages in glassy systems.

. Numerical evidence in models of spin glasses and structural
glasses.
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Fluctuation - response in spin glasses
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A toy example: Mean Field p-Spin Model
Cugliandolo and Kurchan, PRL 71, 173 (1993)

e Dynamical equations for correlation and response (u Epﬁ2/2):
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t/
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e Reparametrization invariance: in the limit of slow dynamics, the
dynamical equations are still satisfied if C(¢t,t') and R(t,t) are re-
placed by:

C(t,t) = C(h(t),h(t))  R(t,t') = R(h(t), h“’”%



Can we understand dynamical heterogeneities?

A possible explanation: the glassy material is aging, but the ages are
fluctuating in space.
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Can we understand dynamical heterogeneities?

Equilibrium state Nonquilibrium dynamics of spin glass
of ferromagnet A

X

A\ N

>

C
Rotations Ry leave RG in time: reparametrizations t — h(t)
free energy F leave “dynamical action” S unchanged
unchanged (irrelevant terms break symmetry at finite times)
Minimization of F[m(7)] (C.Chamon, M.P.Kennett, H.E.C.,
selects the (mean field L.F.Cugliandolo, PRL 89, 217201 (2002))
approx.) physical
magnetization Minimization of S[(Cy(t,tw), x#(t,tw))] selects the

(mean field approx.) physical evolution of (C, x)
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Can we understand

Equilibrium state
of ferromagnet

Fluctuations with high
probability (small 6F):

Ro(r)

(direction of the
magnetization varies
smoothly in space)

“magnons”

dynamical heterogeneities?

Nonquilibrium dynamics
of spin glass

Fluctuations with high
probability (small §S):

t — hz(t)

(age of the material varies
smoothly in space)

(H.E.C., C.Chamon,
L.F.Cugliandolo, M.P.Kennett,
PRL 88, 237201 (2002))
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How do we test this theoretical framework?

1. Measure Cz(t,tyw) and x(t,ty) at fixed, large (¢, tw).

2. See where the points accumulate in the (C,x) plane.

OKllI Doesn’'t work!!
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Probability distribution of local correlations: p(Cr)

(with C. Chamon, L. Cugliandolo, J. Iguain, and M. Kennett: PRL 88, 237201
(2002) and PRB 68, 134442 (2003))

IT Co(t, tw) ~ Co(h(t)/h(tw)) (for example, h(t) ~t in 3DEA) then:
t — hf*(t) — eSOF(t)
Ci(t, tw) = Co(hz(t)/hp(tw)) = Co(exp(ext) — ei(tw)))
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Testing the
theoretical
framework
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3D short-range +J spin glass Monte Carlo
V =643, T = 0.72Ty, ty = 4 x 10* MCs
t/tyw = 1.00005,1.001,1.06,2,8,32
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p(C5) collapses with t/ty

e | tht, = 2 .
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Noise-noise spatial correlations: exponential decay

RG-irrelevant = expect finite correlation length
symmetry-breaking terms (— oo for infinite ¢, tyw).
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ty = 10* MCs, V = 323, T = 0.727,, 64 disorder realizations
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1/(correlation length)

Correlation length £(¢,tw) — £(ttw)
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Structural glass simulations

e 30:20 binary Lennard-Jones mixture, 8000 particles. Thermalized
at 7; = 5.0, time origin at instantaneous quench to Tf = 0.4 (be-
low Ty ~ 0.435). Evolves for up to 100000 LJ units (i.e. ~ 1078s)
after quench. (3 relaxation time is of the order of 1 LJ unit. Re-
peated for 250 to 4000 independent runs (depending on timescale).

e Divide the system in regions, and measure one point, two time
quantities for each region.

CRM (ttw) = iy 2 cos(q - [7(t) — 7 (tw)])
: N (V) i (tw) EVp

Obtain the probability distributions p(C)) for the local values.

e Use the global intermediate scattering function

1 X Lo ,
Cylobal(t, tw) = Wi§1 cos(q - [75(t) — 75 (tw)])

to quantify how correlated the system is between times t,, and ¢t.



Approximate collapse of p(C)) at constant Cgiopal(t, tw)
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Distribution of one-dimensional displacements p(Ax)

P(AX)

approximate collapse at constant Cgopal(t, tw).
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Dynamical correlations: densities

(Lacevic¢, Starr, Schrgder, Glotzer J. Chem. Phys 119, 7372 (2003))

’UJ(I‘, t7 tUJ)

g4(I‘, ta tw)
£4(t7 tUJ)

X4(t7 tw)

1 if particle at r has moved < ay;ip
O otherwise

spatial correlation of w(r,t, tw)
correlation length for g4(r,t, tw)

dynamic density susceptibility
[ & gart,tw)
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Summary

RG in time : In short-range spin glasses, the dynamical action is invariant under
global time reparametrizations (t — h(t)) at long times.

Goldstone modes (age fluctuations) are high probability modes. These modes
control the fluctuations in the aging dynamics.

Tests in MC simulations of a 3D short-range spin glass model:

— The distribution of (Cr, x#) is concentrated on a fixed x(C) curve.

— Co(t,tw) =~ Co(t/ty): i) the distributions of C» collapse for fixed t/t,,

— Irrelevant terms weakly break invariance at finite times: “Goldstone modes”
acquire mass m(t, ty).

Tests in MD simulation of a simple structural glass model:

— Probability distributions of local two-time quantities like C, and Ax approx-
imately collapse at fixed Cglobal(t>tw>-

— Scaling of 4-point density correlation ya(t,tw) =~ x4°(tw)d(C(t,tw)), and cor-
relation length £4(¢,tw) =~ £4°(tw)(C (¢, tw)).



