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Electrons (waves, …) in a random potential

[E - H0 – U(r) ± i /2]G R(A) (r; r`; E) = ( r – r` )
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G R(A) (r; r`; E) – amplitude of electron propagation:

r r`

Exact eigenstates:
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Physical quantities:

Global density of states (DOS):

(E) = L d m ( E – Em) = i/(2 Ld )Tr{[GR(E) - GA(E)]}

Conductance:  G = I/V  =  Ld-2  = (e2/h)g

g = gxx = - 1/(2 L2)Tr{vx[G
R -GA]vx[G

R -GA]};

(E = EF =k2
F/2m)
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Spectral representation:



Diffusion propagation

Fast relaxation of momentum: Lvl
F
<<=
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Diffusion coefficient
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Conductance: 1/2 >>= cEg (  - mean level spacing)



Some physical results

Averaged DOS - no change: )()( EE
d
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Averaged conductance: ggg +>=<
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Scaling hypothesis: Abrahams, et al. (1979)



One-parameter scaling hypothesis



Mesoscopics

Sample to sample variations

Conductance: 1~)( 2
>< g in units

of h

2
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“Universal Conductance

Fluctuations”
[Altshuler (1985);  Lee & Stone (1985)]

Density of states variations (d=2):
22 /1~)/( g><

[Altshuler & Shklovskii (1986)]



Powerful tool for calculation of averaged quantities

– nonlinear sigma-model (reduction to slow degrees

of freedom)

Beyond diagrams

Averaging over disorder – field-theoretical problem

Mesoscopic fluctuations - a need for distribution

functions of physical quantities

Field theory for distribution functions?



1990 2000
2006

1980

1979

“Gang of 4”: Scaling hypothesis

Gor’kov, Larkin, Khmelnitskii

(renormalizability)

Wegner: (bosonic) nonlinear -model

2  d  4

no interaction

Efetov, Larkin, Khmelnitskii: fermionic -model

Efetov: supersymmetric -model  (for < g > )

Altshuler; Stone &

Lee (mesoscopics)

Kravtsov, Lerner, Yudson: anomalous

dimensions of vertices in extended -model

Altshuler, Kravtsov, Lerner: log-normal tails of

distribution functions P(g), P( ), g(t)  P(t )

Muzykantskii & Khmelnitskii

(secondary saddle-point;

tails of  g(t); ballistic effects)

Wegner

(n-vector)

(V.Yu.)



Content

• Averaged quantities and nonlinear -model

• [Instabilities in -model, averaged moments, and log-
normal tails of  P(g), P( ), and P(t ) – sketch]

• [Secondary saddle-point approach and log-normal tails of
P(t ) - sketch]

• Field theory for P( )



Field theory and nonlinear -model

Basic object: Green’s function

Primary representation:

Averaging over the Gaussian disorder is elementary!

Primary variable: local field  (r)

Price for the absence of the denominator:

(Replica trick OR Shwinger-Keldysh contour, OR …)

“Supersymmetry” (Efetov):   = (S, );  - Grassmann variables:



1)][det(])(exp[ ±±± iMSiMiSdSdS

)det(])(exp[ iMiMidd ±±±

1])(exp[ =±± iMidd

±± ])(exp[)'()(],[);',( 0

)(
iUHEirrDErrG

AR



Averaging over disorder
<U(r)U(r') =  (r - r')

“Primary” saddle-point:  Q2 = I;      Q = V z V
-1

symmetry breaking term

1/  = 2 d

Hubbard-Stratonovich decoupling
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“Hydrodynamic” expansion   ( ,  l/L << 1 ) :

Str ln {…} = ( d D/4) Str{ ( Q)2 + 2i /D zQ   usual -model

+ c1l
2 ( Q)4 + c2l

2 ( 2 Q)2  +  c3  2/D ( zQ)2  + …}   

“extended”
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“Hydrodynamic” expansion   ( ,  l/L << 1 ) :

Str ln {…} = ( d D/4) Str{ ( Q)2 + 2 /D zQ  +     usual -

model
+ c1l

2 ( Q)4 + c2l
2 ( 2 Q)2  +  c3  2/D ( zQ)2  + … }   

“extended”

Anomalies (KLY)

Moments <gn>, < n>  (modifications:    i ; Q  Qij ;  i,j = 1, …, n

)

RG transformation of additional scalar vertices

Q



RG transformation of additional vector vertices (KLY 1988-89)
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Conformal structure:  
±
Q = xQ ± i yQ     d = 2

Growth of charges:   zn ~  zn (0) exp [u (n2 – n)]

u = (1/ g) ln(L/l) << 1

Gradient vertex: }){(Str n

n QQz +



AKL: Growth of  cumulant moments:

 <( g/g)n >c  ~ <( / )n >c  ~  g1-n (l/L)2(n–1) exp [u (n2 – n)],

                                                                n > n0  ~  u-1 ln (L/l) ~ g ;

                                            ~  g2–2n ,      n < n0

Log-normal asymptotics of distribution functions:

P(x) ~ exp[– (1/4u) ln2(x/ ) ],    x = /  > 0    OR   - g/g > 0

 = 1/( d L
d)  - mean level spacing 

u = (1/ g) ln(L/l)



AKL: Long-time current relaxation - distribution of relaxation times

Anomalous contribution to  <g( )>  

                                        log-normal asymptotics of  <g(t)>

<g(t)> – g0exp[-t/ ] ~  exp[– (1/4u) ln2(t/ g) ] ~  !  exp[– t/t  ] P(t ) dt

Distribution of relaxation times:    P(t  ) ~ exp[– (1/4u) ln2(t  / ) ]



Muzykantskii & Khmelnitskii:   Secondary saddle-point approach

<g(t)> = g0exp(– t/ ) + ! d /2  exp(-i t) ! DQ […] exp (- S[Q]) ,

S[Q] = /4 !  dr Str{ D( Q)2 + 2i Q }

g(t) – g0exp[-t/ ] ~  exp[– (1/4u) ln2(t/ g) ]   -  ?

Q

Q2 = I



<g(t)> = g0exp(– t/ ) + ! d /2  exp(-i t) ! DQ […] exp (- S[Q]) ,

S[Q] = /4 !  dr Str{ D( Q)2 + 2i Q }

Parametrization:  Q =VHV-1 ;   H = H( , F)

Saddle-point equation for  (r):    2   + 2sinh   = 0 ;    2 = i /D

Boundary conditions:      |leads = 0  ;    n |insulator = 0

Integration over     self-consistency equation:

!  dr/Ld [cosh  – 1] =  t / (  - mean level spacing)

0],[)(2 =+ QiQQD

Saddle-point equation:



d=2 , disk geometry (Mirlin):

r*

R

=  (r)   -  singular  at  r  0  at very large t

(breakdown of  the diffusion approximation!)

Requirement:  | (r)| < 1/l

Cutoff   r* <  r :   (r*) =

0
r* ~ C l

g(t) ~ (t )– 2 g ,     1 << t  << (R/l)2         (MK)

g(t) ~ exp[– g ln2(t/ g)/4ln(R/l)]  ,   t  >> (R/l)2

Solution: (  = 1, 2, 4)

Coincides with the RG result of AKL



However, no alternative way for  P( ) and P(g)

(no field theory for P( ) and P(g) !)

                  Wanted:

  Field theory for distribution function

Requirements:

      disorder averaging

      slow functional description

      RG analysis

      non-perturbative solutions



Not every representation is suitable!

For instance:

(E) = L d m ( E – Em) = i/(2 Ld )Tr{[GR(E) - GA(E)]}

>=< ))(()( EP

Horrible!!!..



Primary representation for the characteristic function

-  bi-local primary superfields;

K = diag{ , I}

Explicitly:

= z  + i y

>< ]/exp[ s



Finally:

Integrating

over

Shift: BM
1~+ s

>=< ]~}{Strexp[)( 1
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=0, due to supersymmetry
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Resume:

Integration runs over “Green’s functions space”;

“Classical trajectory” is the physical Green’s function

BM
1~+ s

“Physical sense” of the integration over bi-local variables

“Averaged” :
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Averaging over Gaussian disorder U and H-S decoupling of

by a matrix field

As a result,

Using the Primary Representation:

H = H0 + U



“Primary” saddle-point approximation

Saddle-point:

Slow functional:

k = diag{1, -1} in “superspace”
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Correspondence with the perturbation theory

ln P(s) =  s + (s /2 )2 q 0 (Dq2) 2  + …

< / > = 0  ; < ( / )2 >c = 2/(2 2) q 0 (Dq2) 2

Non-trivial “accidental” cancellation of

two-loop contributions to  < ( / )3 >c



Beyond the perturbation theory

Secondary saddle-point equation:

- a sub-manifold of the saddle-point manifold

smooth dependence on  (r1 + r2)/2

small difference  |r1 – r2| ~ l

r

r1

r2



Wigner

representation:

In the considered hydrodynamical approximation

(non-extended -model):

k

12 ])(1[ += lppC Fp



Long-tail asymptotics of

Inverse transformation:

Parametrization of the bosonic sector:

=
coshsinh

sinh-cosh
);',( prrQbosonic



Bosonic action:

Self-consistency equation



Saddle-point equation for  boson action

MK equation, for

comparison:
2  (r) + 2sinh (r)  = 0 ;    2 = i /D 

Formal solution

Green’s function of Laplace operator

)/(~ DCs pp =



Self-consistency at  r = r`

Trivial solution:

Non-trivial solution for small           :

Saddle-point action leads to:



A working field-theoretical representation has been

developed for DOS distribution functions.

The basic element – integration over bi-local primary

superfields.

Slow functional (in the spirit of a non-extended

nonlinear -model) has been derived.

Non-perturbative secondary saddle-point approach has

led to a log-normal asymptotics of  distribution

functions.

The formalism opens a way to study the complete

statistics of fluctuations in disordered conductors

Conclusions (DOS)


