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Theoretical problem: investigation of superfluid 
behavior of matter in unusual settings

Bulk solid 4He or H2 
Interfaces, grain boundaries etc.
Quantum clusters
Adsorbed films

Path Integral Monte Carlo: powerful numerical tool to 
study Bose systems  (D. Ceperley, RMP 67, 279, 1995)

Accurate - No adjustable parameter - no trial wave fnctn 
Microscopic Hamiltonian - only input is the potential
Allows direct computation of ρs(T) and n0(T) 
Problem: finite-size effects (”large” system sizes needed)

Outline of the talk



Worm Algorithm: overcomes size limitation of existing 
PIMC technology (ρs(T) hard to compute for N ≳ 100)

Grand Canonical: allows simultaneous calculation of 
structural, energetic properties, as well as dynamic 
(imaginary-time) correlations (e.g., Matsubara Green 
function)

Affords considerable efficiency gain in the calculation of 
ρs(T) - N can be as large as several thousands (accurate 
determination of Tc possible)

Illustrative applications: superfluid transition in liquid 
4He in 2 and 3 dimensions

Application to commensurate solid 4He

Outline (cont’d)



Path Integral Monte Carlo

Thermal averages of physical operators at finite T=1/β
〈Ô〉= Tr(Ôρ) = ∫dR O(R) ρ(R,R,β) 
ρ(R,R,β) many-body density matrix (unknown in general)
Feynman’s recipe: ρ(R,R,β) ≈ ∫dR0...dRP-1 {∏i ρo(Ri,Ri+1,τ)}, τ= β/P
Exact as P→∞, τ→0 ⇒ ρo(R,R’,τ) high-T approximation to exact ρ

Monte Carlo scheme to path integration:
Generate on a computer set of paths {Xi=R0iR1iR...RP-1} sampled 
with probability {∏i ρo(Ri,Ri+1,τ)} ⇒ Metropolis algorithm

Evaluate 〈Ô〉as statistical average of O(Ri)

Crucial to efficiency of method is path sampling strategy



Worm Algorithm
N. Prokof’ev, B. Svistunov and I. Tupitsyn, Phys. Lett. A 238, 235 (1998)

MB, N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 96, 10212 (2006)

Basic idea: work in extended configuration space
Include 1 open Word Line (worm) whose head and tail can advance 
and recede in imaginary time ⇒ Grand Canonical ensemble
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Worm Algorithm (cont’d)
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Local moves only-- all involving worm
Head and tail of worm can “swap” with other World Lines  
⇒efficient sampling of long permutation cycles

Complementary pairs of moves Open/Close, Advance/Recede 
⇒ detailed balance (swap move self-complementary)



Worm Algorithm (cont’d)
Configurations with an open WL contribute to the Matsubara 
Green function (G-sector) ⇒ nontrivial modifications of WL

Swap moves enjoy relatively high acceptance, even with hard core 
potentials 
Head and tail can reconnect, resulting in a diagonal configuration, 
which contributes to the partition function (Z-sector)
Reconnection is attempted periodically (no need to “wait” for it !)
Number of particles fluctuates (WLs can disappear and be 
recreated) -- Note, however, that canonical versions are possible

General algorithm of statistical mechanics
Applied to several quantum and classical lattice models 
No critical slowing down for Ising model



Application: SF transition in 4He
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Superfluid Transition in 3D 4He

1 1.5 2
0

0.25

0.5

0.75

1

n  /ns

T(K)

NN=64 to 2048 
ρS



 SF transition in 4He (cont’d)
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OK, but ...Why do we need large systems ?

Some physical quantities require large size extrapolation
Examples: Tc, n0
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Why is it important to do large systems ?

Some physical phenomena can only be properly formulated 
or studied on sufficiently large system sizes.

Possible superfluid layer at solid 4He grain boundaries 
Superfluidity in porous media
Dislocations and extended defects in quantum crystals
Polycrystalline samples (talk by B. Svistunov next week)



BEC/SF in solid 4He ?
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Results
No evidence of BEC/SF found in a perfect hcp 
crystal at low T 

Ring exchanges do occur, but long permutation cycles yielding 
nonzero winding  (i.e., SF) are not observed
Through “swap” type moves, worm ends can travel far apart 
(providing statistics for n(r) at large r). However, they almost 
invariably reconnect without leaving any permutation behind, 
unlike in the superfluid.
Physical result, not artifact of computational/sampling 
methodology (e.g., possible lack of ergodicity)

Consistent with general theoretical result for 
commensurate crystals 

N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 94, 155302 (2005)



Current and future research 
Accurate determination of vacancy activation 
energy in solid 4He

Application of Green function formalism - no subtraction 
needed of large energies

Exploration of novel phases of solid Helium
Possible “superglass” phase
Superfluidity at grain boundaries (talk by B. Svistunov)
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