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Summary of my studies on solid 4He:
• Full optimization of Shadow Wave Function (SWF)

(Moroni, Galli, Fantoni, Reatto, Phys.Rev.B 58, 1998)
• Microscopic computation of BEC induced by a finite concentration of

vacancies in solid 4He (SWF)
(Galli, Reatto, J. Low. Temp. Phys. 124, 2001)

• New exact projector Quantum Monte Carlo method:
the Shadow Path Integral ground state (SPIGS)
(Galli, Reatto, Mol. Phys. 101, 2003)

• Vacancy excitation spectrum in solid 4He (SWF), longitudinal phonons
(SWF), extra-vacancy formation energy (SPIGS)
(Galli, Reatto, Phys. Rev. Lett. 90, 2003;  J. Low. Temp. Phys. 124, 2004)

• BEC in commensurate solid 4He (SWF)
(Galli, Rossi, Reatto, Phys. Rev. B 71, 2005)

• Study of 4He confined in a narrow pore (SWF)
(Rossi, Galli, Reatto, Phys. Rev. B 72, 2005)

• Transverse phonons in bcc solid 4He (SWF)
(Mazzi, Galli, Reatto, proceedings LT24)

• Critical discussion on the nature of the ground state of solid 4He
(commensurate/incommensurate) and BEC in incommensurate solid 4He
(SPIGS) (Galli, Reatto, cond-mat/0602055)



Is the ground state of bulk solid 4He
commensurate or incommensurate?

• Early theoretical works were based on the assumption of zero-point
vacancies (Andreev and Lifshitz, JETP 93 1969; Chester, Phys.Rev.A 2 1970)

• If ground state vacancies are present this will have significant effects
on low T behavior of solid 4He

(phenomenological theory by P.W. Anderson, W.F. Brinkman, D.A. Huse, Science 310 2005)
• Naive answer: it is commensurate because computation of          in

presence of a vacancy (no of particles 100-500) gives an energy which
is higher of energy of perfect solid

• This argument is not conclusive: the small size of the system and the
periodic boundary conditions do not allow to explore  all relevant
configurations allowed by                 in a real large system
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Vacancy formation energy Δev at melting density (fixed density)! 
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Variational theory of a quantum solid

• In the framework of variational theory of quantum
solids the wave functions fall in two categories:

1. translational invariant Ψ, one example:

(Jastrow)

2. Ψ imposes the symmetry of the lattice localizing the
atoms around the lattice sites

(Jastrow+Nosanow)
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• Example: Jastrow function:
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• Schematic landscape of probability
distribution when density is large
(similarity with probability in
configuration space of suitable
classical particles)

• ΨJ has a finite BEC (Reatto, Phys.Rev.
183, 1969) and a finite concentration
of vacancies

• For a Jastrow wf we know that overwhelming contribution to
normalization QN comes from pockets with vacancies (finite
concentration!): Hodgdon and Stillinger (1995) computed this vacancy
concentration, unfortunately they used an unrealistic ΨJ for solid 4He

• Standard MC computation normalize Ψ0 only in a single pocket,
computed energy is biased by the choice of N and cell geometry

Liquid pocket

Commensurate
crystal pocket

crystal with 1
vacancy pocket

crystal with 2
vacancies pocket



Our variational tool:
Shadow Wave Function

Evolution of Vitiello, Runge and Kalos, Phys. Rev. Lett. 60, 1988
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Direct explicit
Jastrow correlations

Indirect coupling via 
subsidiary (shadow) variables

Particles coordinates:

Shadow variables:

Jastrow terms:
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Shadow variables
• Shadow variables are strongly correlated
Spontaneous translational broken symmetry for ρ>ρ0

Crystalline order of 4He atoms induced by many-body
correlations introduced by the shadow variables

Shadow positions
4He atom positions

SWF simulation of
hcp solid 4He:
projection of the
coordinates of the
real and shadow
particles in a basal
plane for 100
MC steps



SWF: the solid phase
• Presently (a fully optimized) SWF

provides the most accurate variational
description of 4He in the liquid and in the
solid phase

Moroni, Galli, Fantoni, Reatto, Phys.Rev.B58, 1998

• Accurate freezing and melting densities
• Solid phase: spontaneously broken

translational symmetry
Local density hcp lattice ρ=0.029 Å-3

 [Å]

ρ [Å-3]

Local density: direction ⊥ basal plane

[Å-3]

z [Å]

ρ [Å-3]

Equation of state (Aziz potential, 1979)

ρ [Å-3]

E [K]



Ω0
Ω1

Ω2

• Classical interpretation:
normalization of ΨSWF coincides
with the configurational
partition function of a classical
system of suitable flexible
triatomic molecules

⇒ ΨSWF describes a quantum solid
with vacancies and BEC

(Reatto, Masserini, Phys.Rev.B 38, 1988)

• ΨSWFxΓΩo where ΓΩo≠0 only in
the commensurate solid pocket,
ΓΩo increase the kinetic energy

⇒ only a direct calculation can
discriminate commensurate or
incommensurate ground state

Classical analogy

N atoms
N triatomic
molecules

SWF

Commensurate
crystal pocket



• Ground state energy per particle of a truly
macroscopic system: eG=EG/N

• Energy per particle from the simulation of a
commensurate state: e0=E0/N

• Total energy from the simulation of an
incommensurate state with one vacancy: E1=E0+Δev

eG=e0+XvΔev

where Xv is the average concentration of vacancies
• At melting the best energy of a wave function with

localizing factors is 0.056 K per atom above SWF
⇒ allowing for XvΔev , SWF are still the best for any

Xv<0.8% (Δev≈7K at fixed lattice parameter)
• Calculation of Xv for ΨSWF is a priority computation for

the future.



Projector QMC methods: Path Integral Ground State
Sarsa, Schmidt, Magro, J.Chem.Phys., 113, 2001

• Projector QMC: Ground state as  imaginary time
evolution of a trial variational state

• Path Integral representation of the propagator:

• Approximation: finite imaginary time propagation
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Accurate approximation for the short-time propagator, es: Pair-Product
(Ceperely, Rev.Mod.Phys. 67, 1995)
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Our “exact” tool:
Projector QMC: from SWF to SPIGS

• SWF: single (variationally optimized)
projection step of a Jastrow wave
function

Vitiello, Runge, Kalos, Phys.Rev.Lett. 60, 1988

– Implicit correlations (all orders)
– Bose symmetry preserved

• SPIGS: “exact” T=0 projector method
which starts from a SWF

Galli, Reatto, Mol. Phys. 101, 2003

– Notice: unlike PIMC at finite T here no summation
over permutation is necessary, this Ψo(R) is Bose
symmetric if ΨT is symmetric
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SPIGS
In principle the method is exact,
two parameters control convergence:
• Evolution in imaginary time τ (number of

projections P, number of monomers [time
slices] M=2P+1)

• δτ=τ/P → accuracy of the short time
propagator (pair-product approximation:
Ceperley, Rev.Mod.Phys., 67 1995)

example

Evolution in imaginary
time of the

potential energy at
ρ=0.0218 Å-3 starting
from a standard ΨSWF

Convergence of the
energy per particle as
function of τ in a
simulation of solid 4He
starting from a fully
optimized SWF. 
Exponential
convergence: ≈ e-(80K)τ

δτ=(80K)-1

M=5
M=7 M=11 M=15

Incommensurate crystal (1 vacancy, N=107)

Commensurate crystal, N=108, ρ=0.031 Å-3 



QMC: calculation of the one-body density matrix

• One of the open polymers is cut
and the histogram of the
relative distance of the two cut
ends is computed

• We have studied incommensurate
and commensurate solid 4He: the
periodic boundary conditions
forces the structure of the solid.

Finite concentration 
of vacancies

Commensurate
solid
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Incommensurate solid, SWF results:
ODLRO in solid 4He with vacancies

• ODLRO is present in the low density defected
solid

•           is Gaussian like only for small distances

ODLRO: 
microscopic origin
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(Galli, Reatto, J. Low. Temp. Phys. 124, 2001)



BEC in presence of a finite concentration of vacancies
 (Galli, Reatto, J. Low. Temp. Phys. 124, 2001)

• Using a Shadow Wave Function for fcc and for hcp crystal with one
or two vacancies a BEC was found:

At melting density (ρ=0.02898 Å-3)
condensate per vacancy: n0

v = 0.22 (fcc)
  n0

v = 0.21 (hcp)
i.e. for a sample with 1% vacancies, the condensate fraction per atom

is n0=2.2x10-3

We did not answer the question
if vacancies are present in the
ground state

Speculation on the phase diagram:
(T(2)

BEC≈1.32Δev)

P

P

T [K] T [K]



Vacancy excitation spectrum
• We have found a way to extend the excited state SWF

technique to study the vacancy excitation spectrum:
– We have associated one extra-shadow which localizes in the void of

the vacancy in order to study the excitation at finite quasi-
momentum

– The inclusion of the extra-shadow improves the variational energy
– Integration over extra-shadow is a way to change locally the

effective many-body correlations around the vacancy
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SWF results: vacancy excitation spectrum

• Vacancy very mobile, in agreement with recent experiments
Andreeva et al., J.Low Temp.Phys. 110, 1998

• Band width decreases at larger density
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SWF: longitudinal phonons
• We have computed longitudinal phonons in hcp and bcc solid 4He finding

good agreement with experiments
• Also transverse phonon in bcc solid 4He (Mazzi, Galli, Reatto, Proceedings LT24)

Galli, Reatto, Phys.Rev.Lett. 90, 2003 and J.Low Temp.Phys. 134, 2004

Near melting density ρ=0.029 Å-3

hcp bcc

E
(k

)  
[K

]

k [Å-1] k [Å-1]



Incommensurate solid, SPIGS results:
ODLRO in solid 4He with vacancies

• ODLRO is still present with SPIGS

Condensate fraction
proportional to the

concentration of vacancies?
If yes n0 = 0.23Xv

Vacancies are
very efficient in
inducing BEC:

Ideal gas of vacancies
with effective mass

m*=0.35m4He

TBEC≈10.8Xv
2/3=0.2 K

If Xv=2.5x10-3

Sampling along nearest neighbors direction

fcc  ρ=0.031 Å-3  P=54 bars
pair-product approximation δτ=(40 K)-1 

SWF (τ=0)

SPIGS τ=0.025 K-1 SPIGS τ=0.075 K-1

SPIGS τ=0.125 K-1

(Galli, Reatto, cond-mat/0602055)



Vacancy-interstitial pairs (VIPs)
• Even by forcing the solid to be

commensurate one finds the
presence of vacancy-interstitial
pairs (VIPs)

• These VIPs are not excitations but
simply fluctuations of the lattice;
they are part of the large zero-
point in the ground state of the solid

• The term “pairs” is used to underline
the origin of these zero-point
processes.

• Are VIPs unbound?

Doubly occupied 
lattice site

hcp basal plane ρ=0.029 Å-3

vacant 
lattice site



SPIGS: Vacancy-interstitial pairs
• These VIPs are present also in the “exact” sampling of |Ψ0|2

(SPIGS method); in the examples only the internal atoms of the
polymers are shown

• VIP-frequency: ≈1 every 2-3x103 MC steps with 180 4He atoms
⇒ Xvip≈2x10-6

• New excitations? Correlations with 3He atoms?
vacant 

lattice site

Doubly occupied 
lattice site



SWF results: ODLRO in commensurate solid 4He

• ODLRO is present: n0≈5±2x10-6 at melting and
for a finite range of densities (up to 54 bars)

• Local maxima: signature of distorted lattice
• No finite-size effects
• Key process is the presence of VIPs

ODLRO: 
microscopic origin
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New SWF

• We have obtained a more accurate
description of the structure of solid 4He
by means of a new SWF

• As in the calculations of the excitations
spectrum of a vacancy, we have included
some extra-shadow variables in the
commensurate solid; these extra
variables interfere with the structure of
the solid leaving the lattice less
structured

• Variational energy improves (2%)
• Optimal size of extra-shadows depends

on their number.

Local density

ρ
 [Å

-3
]

z [Å]

Bragg peaks in S(k)

S
(k

)
k [Å-1]

ρ=0.031 Å-3
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New SWF: ODLRO results

• ODLRO: in the less
structured solid the
condensate fraction is
greater: about 40 times
higher

• With this new SWF the
density range, where ODLRO
is present, will probably be
larger

• More damped oscillations at
large distance: the plateau is
reached at shorter distances
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One-body density matrix: SPIGS results
• Calculations of the one-body density matrix in fcc solid 4He

at ρ=0.031 Å-3 with SPIGS
• Oscillations in the tail region are still present (VIPs) but the

“projected” ρ1 tends to return on the standard SWF results
• Pair-product approximation: δτ=(40 K)-1 ; τ=0.075 K-1

• Calculation only at short range: ODLRO ?

“half” polymers

interstitial



Within the SWF technique we have studied the
properties of 4He adsorbed in porous materials
(Rossi, Galli and Reatto, Phys. Rev. B 72, 064516 (2005))

• confining media modeled with a cylindrical smooth pore
• potential 4He-cylinder: model potential for Si-4He

(Vidali, Ihm, Kim, Cole, Surf.Sci.Rep. 12, 133 (1991))
• R = 13 Å comparable with Gelsil nominal pore size

• 4He atoms form a distinct layered structure
• at all the considered fillings the adsorbed layer

is solid and insensitive of the total density

increasing the 4He density a layer
by layer solidification takes place
starting from the outermost layer

z

Results:

P = 60 bar

P = 130 bar

P = 207 bar

1st layer
solidificaton

2nd layer
solidificaton

3rd layer
solidificaton

3rd layer2
nd layer

1st layer



single layer contributions to ρ1 along the z direction

3rd layer

2nd layer1st layer

Results:
• non-zero plateau (BEC) for a wide
range of pressures
• in the central region of the pore
there is BEC even if the system is in
the solid phase
• the oscillations in the ρ1 tails are
registered with the crystalline
lattice therefore the major
contribution to BEC comes from
defects such as mobile vacancies

Increasing density

Increasing density
Increasing density



Conclusions and open questions
I have discussed the microscopic theoretical evidence on the simultaneous

presence of diagonal and off diagonal long range order in solid 4He by zero
temperature QMC methods

• If vacancies are present as an equilibrium or a non equilibrium effect we
conclude that there is ODLRO both from variational (SWF) and from exact
projection method (SPIGS): condensate of 0.23Xv at 54 bar

• Non homogeneous Xv could explain the smoothed transition.
• The question commensurate (no vacancies) - incommensurate (yes vacancies)

ground state of solid 4He is still an open question, SWF has ground state
vacancies but we do not know how many, for SPIGS we do not know

• evidence for VIPs also from the exact projection method (SPIGS); ODLRO at
zero (very low) temperature?

• Vacancies are efficient for BEC; more disorder?
• Effect of small concentrations of 3He on vacancies or VIPs?
• We have studied 4He in a cylindrical narrow pore (φ=26Å) mimicking Gelsil,

with SWF. We find evidence for layer by layer solidification and ODLRO also
in the (defected) solid phase.

• If it is not an equilibrium effect of vacancies, by improving the quality of the
sample, NCRI should disappear only in the bulk, not in the confined system.


