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1 receptor ~ 1 neuron ~ 1 glomerulus

ORNs

projection

neurons

Hallem, Trends in Genetics 2004
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Bacterial chemotaxis
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Hallem, Cell 2006
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The combinatorial aspect

ORNs glomeruli 

Wang, Cell 2003



The temporal aspect

ORNs Projection Neurons 

Wilson, Science 2004
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See also Nagel and Wilson
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how do ORN response dynamics depend 

on odor intensity and 

on odor identity?



A framework to analyze ORN dynamics

quantify odor

stimulus



stimulus dynamics…

t ~ 3ms to 1sec

…depends on odor identity



stimulus dynamics…

t ~ 3ms to 1sec

…and on odor concentration
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Transport equations are linear in the odor 

concentration. Where does the dependency on 

concentration comes from? 

Surface interactions

Assume interactions are fast

¶tc = -(1- F)c + Fc0 -
2w
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stimulus dynamics depend on 

odor identity and concentration
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How do ORN response dynamics depend 

on the intensity of a “fast” odorant? 



Dependence on odor concentration
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The response dynamics of individual ORN exhibit 

invariance with respect to odor concentration  
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What if there is a background?
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Response amplitude increases with stimulus intensity

Response dynamics exhibits some invariance to stimulus and 

background intensity



1-octen-3-ol

diethyl succinate

1-pentanol

methyl butyrate
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Response to different odorants

need to deconvolve the 

odor dynamics from 

ORN response



methyl butyrate
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response function to slow and fast odors

delivery system
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NR = 0.44
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One filter mediates 

the response of 

ab3A to two odors 

Large differences in stimulus dynamics can 

dominate the response



Su, Martelli et al. PNAS 2011
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Simulation with LN-

Poisson cascade 

using ab3A LN model 

Odor-dependent dynamics can shape ORN response to 

mixtures of excitatory and inhibitory odorants. 



How does the physiological response

depend on odor identity?  
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How does adaptation affects the 

response function?
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The nonlinear gain adapts.

The filter is invariant.

Compare ORN response at the beginning and end 

of the flickering stimulus



Implications for odor discrimination?



odors with

different 

dynamics

odors with 

same 

dynamics

Contributions from a single ORN
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Odors of different “speed” can be 

discriminated independently of their 

intensity from the response dynamics of a 

single ORN channel

Odors with similar “speed” cannot be 

discriminated using the information from a 

single ORN channel



One ORN responds with the same linear filter to many odorant. Filter 

remains the same even when ORN adapted to background odorant. 

Large differences in ORN dynamics are often just the result of a 

convolution of large differences in stimulus dynamics with the neuron

We observe small (~10 ms) delays in ORN response to different 

odorants. 

Conclusions



Is this relevant outside of the lab?



Head space Fluctuating air stream

Odor-dependent time scales are detected close 

to surfaces
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Living on surfaces

Age (days)

Fruit flies spend a lot of 

time on surfaces

2 h period recorded each 

day at 10 min intervals 

from 1000 to 1200 h

Carey JR et al, 2006



One ORN responds with the same linear filter to many odorant. Filter 

remains the same even when ORN adapted to background odorant. 

Large differences in ORN dynamics are often just the result of a 

convolution of large differences in stimulus dynamics with the neuron

We observe small (~10 ms) delays in ORN response to different 

odorants. 

Two worlds of olfaction: 

• away from surfaces, transport is linear and stimulus dynamics is 

mostly invariant with respect to identity. 

• Near surfaces, nonlinear interactions destroy time coherence 

between compounds

• Question: What happens to mixtures signals near surfaces? Is 

identity of signal compromised by surfaces? 

Conclusions



Acknowledgments

Current Lab
• Carlotta Martelli

• Luis Hernandez

• Nicholas Frankel

• Noah Olsman

• Srinivas G Shandilya

• William Pontius

• Xionfei Fu

• Yann Dufour

Past Members

• Amitabha Nandi

• Garrit Jentsch

• Michael Sneddon

• Oleksii Sliusarenko

• Roger Alexander

Collaborators
• Dennis Mathew

• Chih-Ying Su

• Heungwon Park

• John Carlson

• Philippe Cluzel

• Scott Holley

Funding: NIH, NSF, National  Academies  KFI, James McDonnell Foundation, 

Whitehall Foundation, Paul G. Allen Foundation



physico-chemical properties of odors

determine odor “speed”
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