### The Contribution of Adult-Born Interneurons to Olfactory Bulb Circuit Functions



Laboratory for Perception and Memory — Pasteur Institute & CNRS — Paris - France

### Main Objectives

1) Adult-born neurons boost learning and memory

2) Unique features of new neuron synaptic output

3) Top-down control of adult-born neuron activity

### Main Objectives

### 1) Adult-born neurons boost learning and memory

2) Unique features of new neuron synaptic output

3) Top-down control of adult-born neuron activity

### The Rejuvenating Olfactory System



### The Canonical Microcircuit



### Identifying newborn neurons in adult brain circuits





Antoine Nissant Resarch assistant / CNRS



Carine Moigneu Technician / ANR

### A journey in the forebrain



J. Neurosci. 31: 7551-62 (2012).

### Maturation of newborn neurons plasticity





Pallotto et al., J Neurosci 2012

### Newborn neurons display plasticity



### Newborn neurons are transiently amenable



### Nature of the output signal?



Bardy et al., J. Neurosci. (2010)

### Remote control of adult-born neurons firing by light

#### In vivo recordings in the awake head-fixed mouse



#### Optogenetic control during operant conditioning



Custom-built olfactometer designed for optogenetics available at www.olfacto-meter.com



Gabriel Lepousez Post-doc (ANR)



**Gilles Gheusi** Assistant prof. (Univ. Paris 13)



Mariana Alonso Research associate (Inst. Pasteur)



1 1.25 mm

Sebastien Wagner Engineer (Letten Foundation)

### Effect of adult-born neurons activation on olfactory learning







ChR2+ adult-born granule cell



### Easy and difficult learning tasks



#### Only activation during S+ presentation accelerates difficult learning



Question for the future: Top-down activation of GC during learning encodes odor reward value?

### Learning facilitation depends on light frequency





# Long-term memory is improved by new neurons activation



# Stimulation of early-born neurons does not improve learning



### In vivo recording in awake mice







Awake head-fixed mitral output cell recordings





**Gabriel Lepousez** 

### Firing pattern of output neurons



## 40Hz stimulation increases the regularity of odor evoked spiking





## Summary - Part 1



- Activation of new interneurons facilitates discrimination learning.
  - New neurons improve difficult but not easy tasks.
  - Synchronization of output neurons improves learning

Are adult-generated neurons unique in any way compared to developmentally born neurons?

- Unique intrinsic properties?
- Unique connectivity?
- Unique synaptic transmission?



1) Adult-born neurons boost learning and memory

2) Unique features of new neuron synaptic output

3) Top-down control of adult-born neuron activity

## A comparative screen for finding differences in synaptic physiology between GCs of different ages



Matt Valley Post-doc / ANR



Valley et al. J. Neurosci. (2013)

### Comparison of GABA-B function in GCs born at p6 and p60



Valley et al. J. Neurosci. (2013)





### Adult-born GCs may influence olfactory behavior by showing:

- Long-term potentiation of glutamatergic inputs
- Stronger inhibition in the circuit resulting from non-functional GABA-B signalling
- New patterns of associative connectivity

### Main Objectives

1) Adult-born neurons boost learning and memory

2) Unique features of new neuron synaptic output

3) Top-down control of adult-born neuron activity

#### **Does learning promote changes in synaptic strength?**



#### Spike-timing dependent plasticity rules in the cortical feedback loop





#### Feed-forward inhibitory circuits sculpt mitral cell firing activity

### Olfactory cortical feedback in the olfactory bulb



#### Intrinsic versus extrinsic olfactory bulb networks



Lepousez et al. PNAS (2014).

#### **Olfactory discrimination learning**



#### Learning promotes input-specific structural plasticity





Lepousez et al. PNAS (2014).

### Number of excitatory and inhibitory synapses increase after learning

#### **GABAergic** inputs



#### Glutamatergic inputs





#### More frequent synaptic events after olfactory learning



### **Top-down control of adult-born neuron activity**



### **Top-down control of adult-born neuron activity**



ChR2+ cortical axon terminals

### **Top-down control of adult-born neuron activity**





### Summary – Part 3



- Learning enhances spines density in a restricted domain of new neurons
- The most plastic dendritic domain is the one that connects the cortical inputs
- This reinforces the top-down influence on early stages of information processing

### **Acknowledgements**

Lledo lab Mariana Alonso Antoine Nissant Gabriel Lepousez Alex Bryant Gilles Gheusi Sebastien Wagner Matthew Valley

Charles A. Greer (Yale Univ.) Venky Murthy (Harvard Univ.) Jean-Marc Fritschy (Zurich Univ.)

### Funding





Cultives

## Thanks!

