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horn, than for odour memories that normally do not
represent the fine temporal structure of events. In addi-
tion to the projection neurons,most of which seem to be
cholinergic, the calyx also receives GABA and octopamine
inputs10,19. Recurrent GABA neurons from the mush-
room body lobes20 and from the lateral protocerebrum21

to the calyx have been described in the honeybee and the
locust.Theoctopamineric input will be discussed later.

Several types of antennal lobe projection neurons have
been found: ‘on’ and ‘off ’,phasic and sustained, as well as
more complicated ones18. This is in line with the observa-
tion that more than one projection neuron links each
glomerulus to the calyx and lateral protocerebrum. We
will not consider the fine temporal structure of the olfac-
tory input — this might be more important for acute
behaviour, which we assume to be processed in the lateral
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Figure 2 | Olfactory pathway. Odour information is carried from the third antennal segments and maxillary palps (not shown) to the
antennal lobe, where receptor fibres are sorted according to their chemospecificities in about 40 glomeruli. These represent the
primary odour qualities, which are reported to two major target areas in the brain, the dorsolateral protocerebrum (lateral horn) and
the calyx of the mushroom body. The inner antennocerebral tract (iACT) connects individual glomeruli to both areas. α/α#, β/β# and γ
mark the three mushroom body subsystems described by Crittenden et al. (REF. 64).

Box 1 | Genetic intervention in the brain

Drosophila is unique in its arsenal of genetic tools for intervention in the brain. Although similar techniques are also
available for the mouse, the worm Caenorhabditis elegans and, with qualification, a few other organisms, in none of
them is the versatility of techniques growing as fast. Mutants with reduced or altered mushroom bodies were described
more than 20 years ago62. In several cases their brains were found to be otherwise intact, and many of them show
surprisingly normal behaviour. They have been instrumental in establishing the role of the mushroom bodies in
olfactory learning and memory25. Moreover, several genes have been identified that are preferentially or even exclusively
expressed in the mushroom bodies4 and their promoter sequences have been used to drive transgene expression in these
tissues (reviewed in REF. 3).

The main thrust in Drosophila,however,derives from the enhancer-GAL4 technique61. A yeast transgene for the
transcription factor GAL4 is inserted in an arbitrary location in the Drosophila genome. There, the expression of GAL4
is controlled by flanking Drosophila enhancers and suppressors that normally regulate a Drosophila gene in the
neighbourhood. The resulting expression pattern of GAL4 might include certain cells and tissues under investigation. As
GAL4 is itself a transcription factor, it can drive the expression of other genes (effectors) that are placed downstream of a
DNA sequence that binds GAL4.Hence, the combination of GAL4-driver and effector gene is a way to target the effector
to tissues that happen to express GAL4 in a particular driver line.

More than 40 driver lines with expression in parts of the mushroom bodies (among other brain neurons) and various
effector genes that ablate,block,modify or just visualize the neurons expressing them, are available,providing an
unprecedented finesse in the manipulation of the system.

Heisenberg Nat Rev Neuro 2003
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Combinatorial representation of monomolecular odorants

Not 1 odor = 1 neuron

Combination of active ORNs conveys the identity of the odor 

Hallem & Carlson 2006

hydrophobicity chain length “ester-ness”



Sensory neuron representations

Hallem and Carlson Cell 2005

ORN population response (24 of 51 ORN types) to a single odor
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Dense combinatorial representations for high capacity but...
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ORN population response (24 of 51 ORN types) to a single odor

Hallem and Carlson Cell 2005

synaptic interference

Sensory neuron representations

Dense combinatorial representations for high capacity but...
Overlapping odor representations make accurate learning difficult



Respond to 50% 
of odors

Respond to 5% 
of odors

MB neurons exhibit highly odor-specific responses

Sparse and odor-selective activity in the MB



Sparse representations in human 
peri-hippocampal brain areas

Quiroga et al 
Nature 2005

Hypothesis: Sparse representations minimize overlap and 
diminish interference between different memories



But: 

• Maybe it’s just harder to find responding neurons in the MB?

• Odo-topic mapping of responses?

• Maybe MB neurons respond differently to natural odors?

• Behaviorally relevant stimuli?

Hypothesis: Sparse representations minimize overlap and 
diminish interference between different memories



Tracking activity of neural populations 
using genetically encoded calcium indicators
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select MBNs

Track ~150 of 2000 MB cells = 5-10% total population

Tracking activity of neural populations 
using genetically encoded calcium indicators
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n-dimensional response vector
for each odor presentation trial

(n≈120)

Tracking activity of neural populations 
using genetically encoded calcium indicators

Honegger Campbell Turner JNeurosci 2011
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MB Odor Representations are Sparse



MB Odor Representations are Sparse
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Honegger Campbell Turner JNeurosci 2011

Sparse responses to natural odors

MB not specialized to respond to natural stimuli



circuit evolved to process. We tested this
possibility by examining responses to a
variety of natural smells: apple cider vine-
gar, yeast, mango, and orange. Although
these odors are not as chemically well de-
fined as monomolecular odorants, we felt
it was important to present volatiles from
these genuinely natural stimuli. These ap-
petitive odors drive robust behavioral re-
sponses and are clearly meaningful to the
animal, although it should be noted that
artificial compounds can also produce
strong behavioral reactions (Stensmyr et
al., 2003; Larsson et al., 2004; Fishilevich
et al., 2005). To maximize the possibility
that these odors would drive strong re-
sponses in MB, we presented them at an
odor dilution ratio of 1:2, much less di-
luted than the 1:100 used for monomolec-
ular odors. We found that the sparseness
of natural odor responses fell within the
range of the monomolecular test com-
pounds (Fig. 7G–I). Although they were
in the upper half of this range, this was
likely because of their higher concentra-
tion, because comparable dilutions of a
natural and artificial odor evoked re-
sponses in very similar fractions of KCs
(Fig. 6). Thus, natural odors do not ap-
pear to present special ratios of compo-
nents that could synergistically activate a
large portion of the MB population. The
absence of any specialization toward be-
haviorally relevant complex stimuli suggests that the fundamen-
tal processing feature of the MB is to create sparse stimulus
representations regardless of the nature of the stimulus.

MB responses to natural and monomolecular odors
are indistinguishable
The sparseness of responses to natural and monomolecular
odorants was not noticeably different (Fig. 7I ). Nonetheless,
the perception of natural odors can be compellingly distinct
from monomolecular odors. We therefore asked whether we
could find any difference at all in the representations of these two
odor classes. We compared statistics of responses using four dif-
ferent variables. These are shown in Figure 8A–D, where gray
points represent data from monomolecular odorants and black
points represent data from natural smells.

We tested whether the magnitude or duration of the odor
response could predict whether the stimulus was a natural or
monomolecular odorant. To quantify response duration and
how consistent this duration was across cells, we calculated the
mean and the standard deviation of the number of imaging
frames in which the dF/F time course of cells was above response
threshold (Fig. 8A,B). To determine whether natural odors acti-
vate the same number of cells but evoke a stronger response at
these cells, we calculated the mean evoked response per cell (Fig.
8C) and the standard deviation of the mean evoked response (Fig.
8D). These parameters did not appear to separate natural and
monomolecular odors. Nevertheless, to maximize our chances of
finding a difference, we conducted a linear discriminant analysis
(LDA) on all four variables simultaneously. LDA is a classifica-
tion technique that takes into account multiple variables and

their interactions to best classify two or more groups of data; in
this case, statistics of responses to monomolecular or natural
odorants. We ran the classifier using a leave-one-out cross-
validation to avoid overfitting. The resulting classification suc-
cess was only !78% (Fig. 8E). We assessed the significance of this
level of classification accuracy by rerunning the classifier 10,000
times with randomized odor labels, so there was no longer any
relationship between the response parameters and the identity of
the odors. The resulting distribution of classification success is
shown in Figure 8E. The observed classification success is well
within the range of the randomized values, indicating that natural
and monomolecular odors do not evoke fundamentally different
responses in KCs.

Discussion
We measured odor-evoked neural activity in the Drosophila MB
using two-photon calcium imaging. Monomolecular odorants
evoked sparse responses across the KC population. Activity re-
mained sparse in response to multimolecular odor blends, com-
plex natural odors, and even changes in odor concentration.
Thus, sparseness was relatively unaltered despite large changes in
stimulus complexity and intensity. This robustness is significant
because sparse representations are thought to be important for
information storage (Marr, 1969; Kanerva, 1988) and the MB
plays a critical role in olfactory learning and memory (Erber et al.,
1980; Heisenberg et al., 1985). Interestingly, unlike other sensory
systems, we found that the MB encodes natural and artificial
odors in a similar format. Furthermore, we found that KCs were
not spatially organized according to responsiveness or odor tun-
ing and that responsive KCs appeared to be distributed randomly
within the cell body layer. We find no evidence of either func-

Figure 8. MB population responses to natural and monomolecular odors are indistinguishable. A, Mean response duration
(imaging frames) for natural odors (black circles) and monomolecular odors (gray points). B, Standard deviation of response
duration. C, Mean evoked response magnitude. D, Standard deviation of evoked response magnitudes. E, LDA-based classification
accuracy of natural and monomolecular responses (78%, dashed black bar) compared against chance performance (gray histo-
gram). Observed classification performance was not significantly greater than that of 10,000 chance bootstrap replicates.

11782 • J. Neurosci., August 17, 2011 • 31(33):11772–11785 Honegger et al. • Robust Sparse Coding in the Mushroom BodyResponse Duration Response Magnitude
mean SD mean SD

Natural vs Monomolecular Odors



Lack of Spatial Mapping in MB

identity of the responding cells within the image plane to produce
a new Euclidean distance matrix while keeping the tuning curve
correlation matrix fixed, and recalculated Spearman’s !. This
process was repeated 10,000 times to generate a distribution of !
values expected if tuning curve topography were absent. If the
experimentally observed ! was !95% of the simulated values, we
considered there to be significant tuning curve topography in
that optical section at the " " 0.05 significance level. Figure 4C
shows the distribution of p values for the test of tuning curve
clustering for the 18 flies. All points lie above the significance
threshold, indicating that there is no strong tendency for KCs
with similar odor tuning to be located near one another.

The odor tuning properties of KCs are extremely diverse, so it
may not even be possible to arrange odor tuning curves topo-
graphically in 2-D. Therefore, to validate the results above, we
confirmed that it was feasible to arrange the tuning curves we
measured experimentally in a way that produces a topographic
map. To generate an artificial topographic map with the data
collected, we arranged KCs in a 2-D space based on the correla-
tions between different tuning curves. Specifically, we projected
the correlation matrix into a 2-D space that mimics the imaging
plane. We achieved this using multidimensional scaling (MDS), a
remapping technique that measures the distances between points
in a high-dimensional space and projects this onto a low-

dimensional space (typically 2-D) while attempting to retain the
relationship between points (Martinez and Martinez, 2005). We
tested whether our regression analysis would reveal topography
with the tuning curves arranged in 2-D MDS space. Again, we
calculated the corresponding ! value and compared this to a
distribution of 10,000 ! values generated using randomized Eu-
clidean distance matrices. This analysis showed that the tuning
curves we measured could indeed be arranged topographically.
In every imaging experiment analyzed (n " 18), the MDS-based
topographic map had a greater ! value than all of the randomized
tuning curve maps. Therefore, our inability to find topography in
the original data was not due to the fact that tuning curve shapes
are too varied or too uncorrelated to be regularly arranged in 2-D.

Together, these results demonstrate that neither do odor
representations in the MB cluster spatially nor do KCs with
similar odor tuning properties have apparent spatial localiza-
tion. This suggests that the relationship between response
properties of KCs and their spatial distribution within the cell
body layer is random. Such a lack of spatial organization is a
shared feature of the MB and mammalian piriform cortex
(Stettler and Axel, 2009) and highlights their likely role as
associative areas where anatomical specialization plays a min-
imal role in information processing.

Figure 4. Random spatial distribution of responding MB neurons in the cell body layer. A, The proportion (prop.) of odors eliciting a response from each cell (lifetime sparseness). The vast majority
of cells do not respond to any tested odor (peak at zero). B, Distribution of p values from a permutation test for clustering of responsive neurons within an optical section. Each data point represents
one optical section from an individual fly. Light gray boxes indicate standard deviation around the mean; dark gray box indicates the 95% confidence interval. Only a single imaging plane showed
a nominally significant level of clustering ( p " 0.04). See Results for details. C, Distribution of p values from a permutation test for clustering of neurons with similar tuning curves. Each data point
represents one optical section from an individual fly. We found no evidence for clustering. D, Example imaging planes showing distributions of responsive cells (dark gray). We observed a section with
high clustering value (i) and one with a moderate value (ii); neither showed a visibly striking clustering of responsive neurons. E, Tuning curve correlation as a function of distance between cells from
a single fly. F, Tuning curve correlation as a function of distance in MDS space (see Results) for the fly shown in E. This plot illustrates that obtaining topography is possible with the tuning curves we
observed experimentally.
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But: 

• Maybe it’s just harder to find responding neurons in the MB?

• Odo-topic mapping of responses?

• Maybe MB neurons respond differently to natural odors?

• Behaviorally relevant stimuli?

Hypothesis: Sparse representations minimize overlap and 
diminish interference between different memories
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➭ Do flies actually solve this problem?
ORN type
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Are these stimuli distinct?
1) Can we see they’re evoke distinct responses in the MB?

2) Do the flies learn they’re distinct?

Neural coding
What makes two activity patterns perceptibly different?



Pattern separation in the Mushroom Body
Classifying odors by population activity
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81% Correct
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Pattern separation in the Mushroom Body
Classifying odors by population activity
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Pattern separation in the Mushroom Body
A difficult monomolecular discrimination

Are the most similar pair of monomolecular odorants distinguishable:
1) behaviorally
2) in MB activity patterns

Hallem & Carlson 2006



Olfactory behavior

image:  Vosshall Nature 2007

Pattern separation in the Mushroom Body
A difficult monomolecular discrimination
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The fly’s behavior is coarsely similar to our artificial read-out

50

60

70

80

90

100

%
 c

or
re

ct

octanol v.

methylcyclohexanol

ethyl benzoate v

methyl benzoate
%

 c
or

re
ct

Pattern separation in the Mushroom Body
A difficult monomolecular discrimination



Pattern separation in the Mushroom Body
Connecting psychometric & neurometric measures
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Pentyl acetate Ethyl lactateButyl acetate

Odor generalization

PA and BA evoke similar KC patterns 
Do associations with PA generalize to BA?
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Figure 4. Discrimination and generalization of similar odors. A, Three example MB recordings showing response patterns evoked by the odors PA, BA, and EL, averaged across all trials.
Responses to BA and PA are similar and distinct from EL. B, Venn diagram showing overlap of significantly responding cells from all recordings (n ! 24). Many neurons tend to respond
to both PA and BA, whereas most EL-responsive KCs respond only to EL. C, Correlation scores for each pair of odors. Each point is the correlation score calculated from the average MB
response to each odor within a single recording (n ! 24 recordings). The correlation between PA and BA is significantly (see main text) greater than the other two. Dark gray box indicates
95% confidence interval; light gray box indicates 1 SD; black line is the mean. D, Euclidean distances between odor responses within recordings (circles). Distances are based upon average
MB response patterns. Each point indicates the PA-BA distance (x-axis) versus either the PA-EL (orange) or BA-EL (brown) distance ( y-axis). Statistics reported in D–F are results of a
one-tailed binomial test. E, Linear classifier based on Euclidean distance distinguishes PA from BA (left) and BA from PA (right) above chance (dashed line at 50%) for all recordings. Black
line is the mean. F, When the classifier is trained to detect PA, but tested with BA versus EL, BA is consistently chosen over EL (left). Likewise, when trained to BA, PA is chosen more often
(right). G, Flies can discriminate PA and BA. Gray lines show choices of yoked control/experimental group pairs. Pairing PA with shock significantly reduces the number of flies choosing
PA compared with un-shocked controls (paired t test, one-tailed). Black line indicates the mean across experiments. The label “PA: PA vs BA” indicates that flies in the experimental group
were shocked to PA, then given a choice between PA and BA. Odor preference was calculated against PA in this case. Similar results were obtained in the reciprocal case, “BA: BA vs PA”
(right). H, Flies generalize across PA and BA when tested against EL. Flies shocked to PA and given a choice between BA and EL chose BA less often (paired t test, two-tailed) than the
PA-exposed-only control group (left). Right panel shows reciprocal experiment with flies shocked to BA. In only one case was the proportion of flies choosing PA greater in the shocked
group than its yoked control (red).
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Discriminate Generalize



MB activity patterns reflect 
i) Discrimination of similar odors approaching psychophysical limit
ii) Generalization of associations from one odor to another

Behavior sets biological bounds on interpreting neural activity

What features of the neural activity are responsible? 



Neural activity patterns for 
Just Noticeably Different stimuli

Imaging MB volumes

responses of ~1500 cells
50-80% of the population 



Neural activity patterns for 
Just Noticeably Different stimuli

Imaging MB volumes

respond differentially
60:40 vs. 40:60



Neural activity patterns for 
Just Noticeably Different stimuli

−0.2 0.2 0.6 1 1.4 1.8
−0.2

0.2

0.6

1

1.4

1.8

Pure
Blend

MCH Dominant

n=1799
O

ct
an

ol
 D

om
in

an
t

1 2 3 4

20

40

60

80

100

120

140

160

180

Pure odors: 100% classification accuracy
60:40 Blends: 58% classification accuracy

O
ct

an
ol

 / 
60

:4
0 

O
ct

:M
ch

Mch/ 40:60 Oct:Mch



oct

mch

A

100 : 0

70 : 30

60 : 40 60 : 40

70 : 30

100 : 0

ce
lls

oct mch 70 : 30 30 : 70

B

1

108

ce
lls

oct mch 70 : 30 30 : 70

C

D

100:0

PC1

PC
2

E

60:40

PC1

PC
2

100:0 70:30 60:40
0

0.2

0.4

0.6

0.8

1

blend ratio

bi
na

ry
/to

ta
l r

es
po

nd
er

s

F

100:0 70:30 60:40
0

25

50

75

100
G

blend ratio

%
 c

or
re

ct

Differentially responding neurons

Number of non-overlapping neurons roughly tracks the 
difficulty of the discrimination

pr
op

or
tio

n 
un

iq
ue

 re
sp

on
de

rs



Modeling odor-specificity of learning
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Synaptic plasticity based
on spike rate code

Modeling odor-specificity of learning

Behavior Neural activity
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Behavior Neural activity
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Do MB neurons read the combinatorial code? 
Dendritic integration in MB neurons

1 MB claw contacts 1 PN terminal 
MB neurons have 5-7 claws on average

Leiss et al 
J Comp Neurol 2009

Do MB neurons integrate different inputs on their 
dendritic claws?



5μm Gruntman & Turner
Nat. Neuro 2013

vinegarmethyl benzoate



Odor tuning of MB dendritic claws
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Correlations between odor tuning curves of different dendritic claws
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Correlations between odor tuning curves of different dendritic claws
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Optogenetically dialing up PN input
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Five bouton-claw contacts on one MB cell
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MB spiking requires activation of multiple claws

# spikes not strongly dependent on # claws
P(response) is strongly dependent on # claws

Gruntman & Turner Nature Neurosci 2013

n=191 KC recordings 
n=13 spiking cells
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Integration & Capacity in Sparse Representations

Potential costs of sparseness:
• lack of reliability given small # spikes
• loss of information from thresholding
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MBN

PN1 PN2

Potential costs of sparseness:
• lack of reliability given small # spikes
• loss of information from thresholding
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Integrating combinations of different PN inputs helps maintain 
overall capacity

Potential costs of sparseness:
• lack of reliability given small # spikes
• loss of information from thresholding

Integration & Capacity in Sparse Representations



• MB neurons receive different inputs

• Require multiple inputs to spike

• Synaptic summation plateaus over time

• Multiple inputs add sublinearly

MB neurons integrate the combinatorial code

Correlated tuning - Convergent connections

Fire	  together	  -‐	  Wire	  together
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Fraction of responding cells Tuning Width

Patch clamp

GCaMP v3.0GCaMP v3.0

Patch clamp

GCaMP v3.0 sensitivity is similar to electrophysiology

Tracking population activity in the Mushroom Body with 
genetically encoded calcium indicators

Rob Campbell & Kyle Honegger
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