Sensory guidance of locomotion in leeches and flatworms

Neurophysics of sensory navigation

How animals sense and move in a stimulus gradient

Two recurring strategies:

- 1. Spatial difference: two (or more) receptors at one time.
- 2. Temporal difference: two (or more) measurements by the same receptor(s) at different times.
 - continuous or discontinuous gradient.
 - during movements either along or across the body axis.

Three projects, each looking at different gradients in different worms:

Worm Gradient Student

Neurophysics of sensory navigation

Eva-Maria Schoetz-Collins Swarthmore

David Weisblat UC Berkeley

Daniel Wagenaar Caltech

Three projects, each looking at different gradients in different worms:

Worm	Gradient	Student
Planarian	Stationary light	Akihiro Yamaguchi
Small leech	Stationary mechanical (roughness)	Jiayin Hong
Big leech	Moving light and water waves	Jess Kanwal

Leeches come in a variety of shapes and sizes

Leeches come in a variety of shapes and sizes

Helobdella austinensis

Dylan Le Eva-Maria Schoetz-Collins

The flatworms are actually quite small:

Flatworms move away from light

Move forward ("glide"): beat cilia on ventral surface

Turn by contracting longitudinal muscles in body wall

Flatworm negative phototaxis

Initial distribution of ~100 flatworms

1 minute after turning on a light

Flatworm neuroanatomy

Responses of individual planaria:

Lidocaine treatment of

Provisional conclusion: planaria use an intensity comparison between the two eyes to avoid bright light.

Akihiro Yamaguchi will test this idea in the next 3 weeks.

Inoue, Hoshino, Yamashita, Shimoyama, Agata (2015) Zool Lett

Small leech moves to smooth surfaces, food

Small leeches on sandpaper of differing roughness

Kim, Le, Ma, Heath-Heckman, Whitehorn, Kristan, Weisblat (2018)

Number of steps on a uniform substrate (small leech)

Small leeches choose smoother surfaces

Small leeches make L/R scanning movements before stepping:

Sometimes they also lift their heads during scanning:

....and make more head-lifts on coarser surfaces.

Jiayin Hong will tell you more about this at the end of the course

Kim, Le, Ma, Heath-Heckman, Whitehorn, Kristan, Weisblat (2018)

Large leech moves into water waves, moving shadows

Qualitative description of scan behavior in the big leech

Heading changes after scanning behavior in the big leech

Harley CM, Wagenaar DA (2014) Scanning Behavior in the Medicinal Leech Hirudo verbana. PLOS ONE 9(1): e86120. https://doi.org/10.1371/journal.pone.0086120

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086120

Scanning behavior becomes localized to a given stimulus (big leech)

Harley CM, Wagenaar DA (2014) Scanning Behavior in the Medicinal Leech Hirudo verbana. PLOS ONE 9(1): e86120. https://doi.org/10.1371/journal.pone.0086120

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086120

Stimulus Location

S cell responses to mechanical and visual wave stimuli (big leech)

Andrew M. Lehmkuhl et al. J Exp Biol 2018;221:jeb171728

Dependence of S cell responses on wave direction (big leech)

Dependence of S cell responses on wave direction (big leech)

Optical activity in motor neurons during swimming

Some neurons are active during both crawling & swimming

Neurons in phase with swim: 90

Neurons in phase with crawl: 188

Total neurons recorded: 350

Kevin Briggman

How swimming and crawling interact

Swimming and crawling seem to be different dynamic states of the same neuronal network

Kevin Briggman

Neurophysics of sensory navigation

How animals sense and move in a stimulus gradient

Two recurring strategies:

- 1. Spatial difference: two (or more) receptors at one time.
- 2. Temporal difference: two (or more) measurements of the same receptor(s) at different times.
 - could be continuous or discontinuous gradient.
 - during movements either along or across the body axis.

Three projects, each looking at different gradients in different worms:

Worm	Gradient	Pls	Students
Planarian	Stationary light	Collins/Kristan	Akihiro Yamaguchi
Small leech	Stationary mechanical (roughness)	Weisblat/Kristan	Jiayin Hong
Big leech	Moving light and water waves	Wagenaar	Jess Kanwal

Theodosius Dobzhansky, "Nothing in Biology Makes Sense Except in the Light of Evolution" (1973)

Kristan dictum (2018): Nothing in neuroscience make sense except in the light of behaviorand even then, not always!

Janis Weeks

Shawn Lockery

John Lewis

Kevin Briggman

Mike Baca

Jason Pipkin

Joyce Murphy

Krista Todd

Daniel Wagenaar

Mike Baltzley

Paxon Frady

Behavioral choice group

KRISTAN LAB

- * Kevin Briggman Tim Cacciatore Teresa Esch Paxon Frady Kathy French
- * Quentin Gaudry
- * Chris Palmer
 Brian Shaw
 Adam Taylor
 Krista Todd
 Daniel Wagenaar

COLLABORATORS

UCSD:

David Kleinfeld

Roger Tsien

Tito Gonzalez

Evan Miller

Gary Cottrell

Henry Abarbanel

Karen Mesce-U Minn

Eric Horvitz-Microsoft Research

Peter Brodfuehrer-Bryn Mawr

Special thanks to:

Federal agencies:

National Science Foundation
National Institute of Mental Health
National Institute of Neurological Diseases
and Stroke

Private donors:
Whitehall Foundation
Microsoft Research
Richard Geckler

Some hard-won wisdom:

- If you can think of a possible mechanism, it will be found somewherealong with several others you never imagined.
- There are few clear dichotomies in biological systems... reality will always be "both", "in between", or "other".
- "Model system" is a slippery concept, depending on the definition*:
 - 1. A substitute for the real system (e.g., human)
 - The best system for approaching a given problem
- There is no such thing as a "simple system"!
- New tools (e.g., molecular, imaging, computational) are extremely effective
 —be prepared to use them all!

*See: Katz PS (2016) "Model organisms" in the light of evolution. Curr Biol 26:R1-R2.

SUMMARY AND SPECULATIONS

Decision-making can use a number of mechanisms:

- inhibition of sensory input (feeding inhibits everything else)sledge hammer
- inhibition of command neurons (feeding inhibits withdrawal in *Pleurobranchaea*)
- alternative states of shared decision-makers (swimming/crawling)velvet glove

Decisions may be made in stages:

- take some action ("do something")
- broad decisions ("get out of here")
- more specific decisions ("swim" or "crawl")

Some neurons have multiple functions (cell 208 is a decision-maker and a swim CPG neuron).

Pure speculation: most neurons in complex brains are multifunctional, because new behaviors arise in evolution by using neurons that already have a function.

A consequence of multifuntional neurons: quick transitions between behaviors:

Why a leech?

August Krogh (1874-1949)

Danish comparative physiologist

"For such a large number of problems there will be some animal of choice, or a few such animals, on which it can be most conveniently studied."

"Krogh's Principle"

Ted Bullock (1915-2005) "Use the best animal to answer any particular question"

Why a leech?

Walter Heiligenberg (1938-94) "Use the champion animal"

Ted Bullock (1915-2005) "Use the best animal to answer any particular question"

Why a leech?

- Can study a neuronal circuit from sensory input to motor output.
 Can drive each circuit into the ground.
 Totally.
- 2. Its behaviors are distinct and robust.
- 3. Its neurons are readily recordable, with both electrodes and voltage-sensitive dyes.
- 4. Its neurons are identifiable from animal to animal.
- 5. It has just the right number of neurons:
 - circuits are similar to those in more complicated animals.
 - because there is little or no redundancy, can test for necessity and sufficiency at the cellular level;
 i.e., a single neuron affects behavior.

Leeches make decisions to crawl.....

....or to swim

12/5/01 00:35:25.10