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Outline

• What does my group do? 

• Some philosophy 

• Worms, take 1: statistics 

• Worms, take 2: dynamics
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What do we study?

• How biology processes information and learns? 
– Neurons, individual cells, brains, populations… 
– What are the limits to our information processing capabilities?  
– What are the computational and biophysical mechanism used by 

biology to learn the environment?
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Why do we study this?
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Why do we study this?

“Studying string theory cannot be more exciting than studying 
the brain that can study string theory.”
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http://en.wikipedia.org/wiki/String_theory
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Thanks

• Bryan Daniels (Arizona State) 

• Will Ryu (Toronto) 

• KaWai (George) Leung (data science somewhere in 
Boston) 

• Aliya Mohammadi (Toronto)
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Successes of q-bio
• We know that circuits (neural, genetic, signaling) can be understood 

mathematically. 

• Noise and individual variability are not just “…it happens,” but can 
also be modeled. 

• We (often) understand why the circuits are the way they are from 
control-theoretic, information-theoretic, evolutionary, and 
optimization principles.  

• There is probably no “paradigm change”, no “new physics” at the 
small circuits level: putting enough experiments, stat mech, and 
nonlinear dynamics together, we can understand every circuit. 

• Measuring 1000s of variables is relatively easier than knowing what 
to do with the measurements. 

• And yet, more is different, and we don’t know how to deal with it.
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How do we model this?
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How do we go from circuits to organisms?
A culture’s icons are a window onto its 
soul. Few would disagree that, in the 
culture of molecular biology that 
dominated much of the life sciences for 
the last third of the 20th century, the 
dominant icon was the double helix. In 
the present, post-modern, ‘systems 
biology’ era, however, it is, arguably, 
the hairball. 

 A.D. Lander. BMC Biology 2010, 8:40
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Margolin et al., 2006
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Of exactitude in science
...In that Empire, the craft of  Cartography attained such Perfection that 
the Map of  a Single province covered the space of  an entire City, and the 
Map of  the Empire itself  an entire Province. In the course of  Time, these 
Extensive maps were found somehow wanting, and so the College of  
Cartographers evolved a Map of  the Empire that was of  the same Scale as 
the Empire and that coincided with it point for point. Less attentive to the 
Study of  Cartography, succeeding Generations came to judge a map of  
such Magnitude cumbersome, and, not without Irreverence, they 
abandoned it to the Rigours of  sun and Rain. In the western Deserts, 
tattered Fragments of  the Map are still to be found, Sheltering an 
occasional Beast or beggar; in the whole Nation, no other relic is left of  the 
Discipline of  Geography.  

From Travels of  Praiseworthy Men (1658) by J. A. Suarez Miranda (a fictional reference).  
 By Jorge Luis Borges and Adolfo Bioy Casares.  

English translation quoted from J. L. Borges, A Universal History of  Infamy,  
Penguin Books, London, 1975.
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At CNS 2014
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large multiscale computational model. We need more experimental 
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At CNS 2014
• A common opinion: “The final theory of biological systems will be a 

large multiscale computational model. We need more experimental 
data to specify its details.”

• There’s something wrong with this statement, in my opinion. 
– What is the “final” theory? 
– Do we need the theory of “everything” in any biological (or 

physical) system? 
– What’s the final theory of my coffee mug?

• “Don’t model bulldozers with quarks.”  (Goldenfeld and Kadanoff, 1999)  

– Theories must loose details and must be developed to explain 
limited sets of phenomena.

• Otherwise: The best material model of a cat is another, or 
preferably the same, cat.  (Philosophy of Science, Wiener and Rosenblueth, 1945)
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Without loosing details,  
biology ceases to be science

• Western scientific tradition: 
– There are laws (of nature, of god, whatever). A rock is a rock 

everywhere. It falls the same in Pisa and in Atlanta. 
– There’re causes and there are effects. 
– There is “useless information” (Oscar Wilde). 
– But this belief requires closing one’s eyes to minor discrepancies 

– Two balls dropped from the Leaning Tower didn’t actually land simultaneously. 
– “If we had the STM in the 1920s, there wouldn’t be the Debye theory of solids.” 

(H. Levine) 

• Non-western tradition, e.g., buddhism 
– Pratityasamutpada: dependent origination: “Pratitya samutpada is sometimes 

called the teaching of cause and effect, but that can be misleading, because we 
usually think of cause and effect as separate entities, with cause always 
preceding effect, and one cause leading to one effect. According to the teaching 
of Interdependent Co-Arising, cause and effect co-arise (samutpada) and 
everything is a result of multiple causes and conditions... “ — Thich Nhat Hanh
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So...

• Are there phenomenological, coarse-grained, and yet 
functionally accurate representations of activity of (some) 
biological systems, or are we forever doomed to every 
detail mattering? 
– Such models would not answer every question, but specific questions on 

coarse scales. 

• How can we learn such phenomenological models directly 
from data? 

14
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In this talk

• We will study one data set of nociceptive escape response 
in the worm. 

• We will first build a purely phenomenological model of this 
process, designed specifically to answer behavioral 
questions. 

• We will then build a dynamical model of the same data 
using an automated inference system.
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Getting back to the worms
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Questions

• How does the sensory information influence the behavior? 
– Can we predict the behavior from the sensory signals? 
– Can we postdict the sensory signals from the behavior? 

• Nociception 
– Can’t ask an animal “Could you please rate the pain you experience 

on the scale of 1-10?” 
– How do we test analgesics using animal models? 

• How to distinguish analgesic effects of drugs from effects 
on motor behavior? 
– An old joke: how do you prove that a roach hears with its legs? 

• How to model complex behaviors? 
– Detailed, mechanistic modeling, from molecules to neurons to 

behavior over long time scales is unlikely to work. 
– Need phenomenological models.
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Typical center of mass trajectories
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Properties of the escape behavior: 
Statistics of states depends on stimuli

19
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Simple statistical characterizations are insufficient: 
Need whole behavior quantification
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Simple statistical characterizations are insufficient: 
Need whole behavior quantification

• Max escape velocity shows little predictive power.

• Analysis made complicated by having paused and active escaping 
worms.

• Simple statistics show little power to distinguish effects of 
perturbations, which are visually significant.
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Modeling whole behavior: Bayes to the rescue
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Modeling whole behavior:  
Templated escape response
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Modeling whole behavior:  
Templated escape response

• Similar templating (but without rescaling) for pausing.

22
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How does the templating assumption work? 
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The templates and the scaling functions

• Ibuprofen treatment does not change the template, and 
only changes parameters of the scaling function. 

• Mutant changes the template and changes the shape of the 
scaling function! 
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Explanatory power of the template model  

• The model has a much worse explanatory power for the 
mutant. Mutant changes the worm behavior qualitatively. 

• Conclusion: mutant is not an analgesic/sensory mutant 
only.
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Can quantify analgesic effects
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Summary I:

• Can relate stimulus to behavior in a quantitative model. 

• Can quantify analgesic effects. 

• Can say if the effect is more than analgesic. 

• But: can we automate the modeling?

27
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Can we infer the equations governing the worm’s 
dynamics?
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Can we infer the equations governing the worm’s 
dynamics?
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First steps for dynamics  
(and keep the worm in mind)

29
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• Assume that dynamics of cellular networks is temporally 
local, given by ordinary differential equations. 
• Do not fit curves; fit dynamics. 

• Neglect stochasticity, and spatial structure for now
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First steps for dynamics  
(and keep the worm in mind)

• Can we automatically fit these functions fi  from data? 
– How do we enumerate the set of all possible multivariate functions? 
– How do we search through this list? 
– How do we not overfit?
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The field (and we) has worked  
on this problem for a while

• Bottom-up methods, reducing a known microscopic, 
mechanistic network (not the easiest path). 

• Top-down methods that build phenomenological models 
from data directly, and without reconstructing a mechanistic 
network as an intermediate step 
• Crutchfield and McNamara, Compl Syst 1987 
• Voit et al, Theor Biol Med Model 2006 
• Lillacci and Khammash, PLoS CB 2010 
• Munsky, et al., MSB 2009, Science 2013 
• Lipson et al., Science 2009, Phys Biol 2011 - EUREQA 
• Brunton et al., 2016 - SINDY 
• AutomatedStatistician.com

30

http://AutomatedStatistician.com
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Can we avoid the exhaustive search and the need 
for the correct basis?
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for the correct basis?

• Do not need an exhaustive search or exact fits when fitting dimensional 
curves with progressively increasing complexity 

31
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Can we avoid the exhaustive search and the need 
for the correct basis?

• Do not need an exhaustive search or exact fits when fitting dimensional 
curves with progressively increasing complexity 

– Use nested, complete model families, e.g., Taylor series. 
– Use Bayesian model selection to limit the complexity of the search space (the 

value of maximum K).

31

yK(x) =

KX

k=1

Akx
k
+ noise

Schwartz, Ann Stat 1978; MacKay, Neural Comp, 1992 
 Balasubramanian, Neural Comp, 1996; Nemenman, Neural Comp, 2005
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Why is fitting dynamics so hard?
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Why is fitting dynamics so hard?

• Hidden degrees of freedom and nonlinearities breaks nestedness -- no consistency. 

• Choose any (reasonable) complete path through the model space 
– Good choice — good fits with little data; Bad choice — not worse than exhaustive 

search.
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Two types of model families

• Both nested and complete. 

• Account for nonlinearities and hidden variables. 

• Biologically reasonable.

33

Daniels and Nemenman, Nature Comm 2015; PLoS ONE 2015
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rewritten in the power-law form by defining new dynamical variables in the correct way [? ]. Thus a power-law
network of su�cient size can describe any such deterministic dynamical system to arbitrary accuracy (XXX caveats?).

An advantage of the s-system representation is the existence of a natural scheme for creating a one-dimensional
hierarchy: simply adding dynamical variables xi. The most general power-law network is fully connected, such that
every “node” xi can a↵ect every other xj through gij and hij . A simple hierarchy would start with a fully-connected
network consisting of the necessary number of input and output nodes, and simply add fully-connected “hidden”
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(perhaps unnecessarily), we prefer to take a more fine-grained approach, adding parameters as slowly as possible (see
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smooth dynamics arbitrarily well with a su�cient number of dynamical variables [? ]. We use the same method as
the s-system models to create a one-dimensional nested hierarchy.
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Finding laws that we already know: 
An automated Sir Isaac (SirIsaac on GitHub)  

• Finds the hidden variable needed to account for the Newton’s laws. 

• Accounts for different classes of trajectories.
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Test Model:  
Yeast Glycolytic Oscillator

• 7 species, 28 parameters 

• Complex rational dynamical 
laws
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The yeast glycolytic oscillations: 
Complex dynamics needing complex structure

• Observe only 3/7 of variables; add 
10% noise. 

• Data: N samples of structure 
– Initial condition of the 3 species; 
– Some random time later; 
– The value of these 3 species at that 

time.
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Results

37
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• ~100x fewer evaluations 
for the same accuracy 
compared to full search. 

• ~1000x fewer data 
points than full search.  

• Better accuracy than 
curve fitting. 

• Linear scaling with the 
amount of data and with 
the number of variables. 

• Finds conservation laws.
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Modeling C. elegans temperature nociception 
escape response
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Modeling C. elegans temperature nociception 
escape response
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Question: what is the logic of this behavior?
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Worm nociception: Data and fits
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Daniels, Ryu, IN, in prep.
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Comparing to hand-curated model
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What is the logic of the behavioral dynamics? 
A single attractor
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Why should you believe our model? 
The predictions
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Interpreting the model
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Summary II
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Summary II

• Deemphasize “truth” of a model, focus on accuracy of 
prediction and on refining (not coarse-graining) 
phenomenological dynamics.

• Complete, nested model families of dynamics allow to use 
Bayesian model selection to adapt model complexity.

• Such phenomenological models make accurate and 
interpretable predictions, at least for the worms.

• Why do this? Go from models to phenomenological 
theories  

– Repeat Hookean approach in biology: build effective models of similar systems 
and look for patterns (e.g., chemotaxis in C. elegans and E. coli).
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