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Outline

 What does my group do?
e Some philosophy
e Worms, take 1: statistics

 Worms, take 2: dynamics
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What do we study?

 How biology processes information and learns?
—Neurons, individual cells, brains, populations...
—What are the limits to our information processing capabilities?

—What are the computational and biophysical mechanism used by
biology to learn the environment?
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Why do we study this?
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Why do we study this?

“Studying string theory cannot be more exciting than studying
the brain that can study string theory.”
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http://en.wikipedia.org/wiki/String_theory

Thanks

e Bryan Daniels (Arizona State)
e Will Ryu (Toronto)

e KaWai (George) Leung (data science somewhere in
Boston)

e Aliya Mohammadi (Toronto)
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Successes of g-bio

 We know that circuits (neural, genetic, signaling) can be understood
mathematically.

* Noise and individual variability are not just “...it happens,” but can
also be modeled.

 We (often) understand why the circuits are the way they are from
control-theoretic, information-theoretic, evolutionary, and
optimization principles.

e There is probably no “paradigm change”, no “new physics” at the
small circuits level: putting enough experiments, stat mech, and
nonlinear dynamics together, we can understand every circuit.

 Measuring 1000s of variables is relatively easier than knowing what
to do with the measurements.

 And yet, more is different, and we don’t know how to deal with it.
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How do we model this?
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How do we go from circuits to organisms?
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Of exactitude in science

...In that Empire, the craft of Cartography attained such Perfection that
the Map of a Single province covered the space of an entire City, and the
Map of the Empire itself an entire Province. In the course of Time, these
Extensive maps were found somehow wanting, and so the College of
Cartographers evolved a Map ot the Empire that was of the same Scale as
the Empire and that coincided with 1t point for point. Less attentive to the
Study of Cartography, succeeding Generations came to judge a map of
such Magnitude cumbersome, and, not without Irreverence, they
abandoned it to the Rigours of sun and Rain. In the western Deserts,
tattered Fragments of the Map are still to be found, Sheltering an
occasional Beast or beggar; in the whole Nation, no other relic 1s left of the
Discipline of Geography.

From Travels of Praiseworthy Men (1658) by J. A. Suarez Miranda (a fictional reference).

By Jorge Luis Borges and Adolfo Bioy Casares.

English translation quoted from J. L. Borges, A Universal History of Infamy;,
Penguin Books, London, 1975.
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At CNS 2014
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At CNS 2014

A common opinion: “The final theory of biological systems will be a
large multiscale computational model. We need more experimental
data to specify its details.”
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At CNS 2014

A common opinion: “The final theory of biological systems will be a

large multiscale computational model. We need more experimental
data to specify its details.”

e There’'s something wrong with this statement, in my opinion.
— What is the “final” theory?
— Do we need the theory of “everything” in any biological (or
physical) system?
— What's the final theory of my coffee mug?
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At CNS 2014

A common opinion: “The final theory of biological systems will be a
large multiscale computational model. We need more experimental
data to specify its details.”

e There’'s something wrong with this statement, in my opinion.
— What is the “final” theory?
— Do we need the theory of “everything” in any biological (or
physical) system?
— What's the final theory of my coffee mug?

e “Don’t model bulldozers with quarks.” (Goldenfeld and Kadanoff, 1999)

— Theories must loose details and must be developed to explain
limited sets of phenomena.

e Otherwise: The best material model of a cat is another, or
preferably the same, cal. (Pnilosophy of Science, Wiener and Rosenblueth, 1945)
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Without loosing details,
biology ceases to be science

* Western scientific tradition:

— There are laws (of nature, of god, whatever). A rock is a rock
everywhere. It falls the same in Pisa and in Atlanta.

— There’re causes and there are effects.
— There is “useless information” (Oscar Wilde).

— But this belief requires closing one’s eyes to minor discrepancies

— Two balls dropped from the Leaning Tower didn’t actually land simultaneously.

—“If we had the STM in the 1920s, there wouldn’t be the Debye theory of solids.”
(H. Levine)

 Non-western tradition, e.g., buddhism

— Pratityasamutpada: dependent origination: “Pratitya samutpada is sometimes
called the teaching of cause and effect, but that can be misleading, because we
usually think of cause and effect as separate entities, with cause always
preceding effect, and one cause leading to one effect. According to the teaching
of Interdependent Co-Arising, cause and effect co-arise (samutpada) and
everything is a result of multiple causes and conditions... “ — Thich Nhat Hanh
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So...

* Are there phenomenological, coarse-grained, and yet
functionally accurate representations of activity of (some)
biological systems, or are we forever doomed to every
detail mattering?

— Such models would not answer every question, but specific questions on
coarse scales.

 How can we learn such phenomenological models directly
from data?
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In this talk

* We will study one data set of nociceptive escape response
In the worm.

* We will first build a purely phenomenological model of this
process, designed specifically to answer behavioral
guestions.

* We will then build a dynamical model of the same data
using an automated inference system.
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Getting back to the worms
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Questions

e How does the sensory information influence the behavior?
— Can we predict the behavior from the sensory signals?
— Can we postdict the sensory signals from the behavior?
* Nociception
— Can’t ask an animal "Could you please rate the pain you experience
on the scale of 1-107”

— How do we test analgesics using animal models?

 How to distinguish analgesic effects of drugs from effects

on motor behavior?
— An old joke: how do you prove that a roach hears with its legs?

e How to model complex behaviors?

— Detailed, mechanistic modeling, from molecules to neurons to
behavior over long time scales is unlikely to work.

— Need phenomenological models.
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Typical center of mass trajectories
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Properties of the escape behavior:
Statistics of states depends on stimuli
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Simple statistical characterizations are insufficient:
Need whole behavior quantification
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 Max escape velocity shows little predictive power.

* Analysis made complicated by having paused and active escaping
worms.

e Simple statistics show little power to distinguish effects of
perturbations, which are visually significant.
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Modeling whole behavior: Bayes to the rescue

P(v[)P(I) 1
Py = zPVIDP)

P(I|v) =

P(v|l) = P(v|s=p,I)P(s =p|I)+ P(v|s =a,I)P(s = al|l)

(1/Zy)?

P(S=G|I,IO) — l—P(3=p|I,I()) — 1+(I/Io)2
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Modeling whole behavior:
Templated escape response
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Modeling whole behavior:
Templated escape response

1 1 )
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P(v|a,I) =

I

)= frn) =T+ 17,

o Similar templating (but without rescaling) for pausing.
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How does the templating assumption work?
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The templates and the scaling functions
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e |buprofen treatment does not change the template, and
only changes parameters of the scaling function.

* Mutant changes the template and changes the shape of the
scaling function!
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Explanatory power of the template model
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* The model has a much worse explanatory power for the
mutant. Mutant changes the worm behavior qualitatively.

e Conclusion: mutant is not an analgesic/sensory mutant
only.
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Can quantify analgesic effects
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Summary I:

e Can relate stimulus to behavior in a quantitative model.
e Can quantify analgesic effects.

e Can say if the effect is more than analgesic.

e But: can we automate the modeling?
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Can we infer the equations governing the worm'’s
dynamics?
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First steps for dynamics
(and keep the worm in mind)

 Assume that dynamics of cellular networks is temporally
local, given by ordinary differential equations.

* Do not fit curves; fit dynamics.

e Neglect stochasticity, and spatial structure for now

% = fi(x1,22,...,2Tn)
dg_tn — fn(x17$27 K 7$n)
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First steps for dynamics
(and keep the worm in mind)

 Assume that dynamics of cellular networks is temporally
local, given by ordinary differential equations.

* Do not fit curves; fit dynamics.

e Neglect stochasticity, and spatial structure for now

% = fi(x1,22,...,2Tn)
d&”—; = fu(T1,22,...,2p)

* Can we automatically fit these functions f; from data?
— How do we enumerate the set of all possible multivariate functions?

— How do we search through this list?
— How do we not overfit?
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The field (and we) has worked
on this problem for a while

e Bottom-up methods, reducing a known microscopic,
mechanistic network (not the easiest path).

e Top-down methods that build phenomenological models
from data directly, and without reconstructing a mechanistic

network as an intermediate step

 Crutchfield and McNamara, Compl Syst 1987

 Voit et al, Theor Biol Med Model 2006

e Lillacci and Khammash, PLoS CB 2010

 Munsky, et al., MSB 2009, Science 2013

 Lipson et al., Science 2009, Phys Biol 2011 - EUREQA
e Brunton et al., 2016 - SINDY

 AutomatedStatistician.com
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http://AutomatedStatistician.com

Can we avoid the exhaustive search and the need
for the correct basis?
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Can we avoid the exhaustive search and the need
for the correct basis?

e Do not need an exhaustive search or exact fits when fitting dimensional

curves with progressively increasing complexity
A

K
Y () = Z Apz" + noise
k=1
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Can we avoid the exhaustive search and the need
for the correct basis?

e Do not need an exhaustive search or exact fits when fitting dimensional

curves with progressively increasing complexity
A

K
Y () = Z Apz" + noise
k=1

>

— Use nested, complete model families, e.g., Taylor series.

— Use Bayesian model selection to limit the complexity of the search space (the
value of maximum K).

Schwartz, Ann Stat 1978; MacKay, Neural Comp, 1992
Balasubramanian, Neural Comp, 1996; Nemenman, Neural Comp, 2005
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Why is fitting dynamics so hard?

;E Few params.; Many
—
5 bad fits s
£ / anything
1o
= Space of
2‘5 models
—
A7 More hidden variables
@~ et
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Why is fitting dynamics so hard?

% = Ao} @ ;E Few params.; Many
1 AR 2oz = params.; fit
14{:1::13}:1j Of O bad fits 5
+... .5 T @ anything
T TO 0T 2 % Space of
o
2o models
—_—
AT More hidden variables
O A
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Why is fitting dynamics so hard?

d_f - A{xé})f jé Few params.; Many
T 14{:1::13}9j OF 8 bad fits params..; it
n 5 T @ anything
A 2o 07 B %

A{m}:p @ = Space of
—
2o models
—_—
AT More hidden variables
-— — vt (9 = Ay @+ Bp & Broyk8k
dt N A{CUCU}‘/B ) i A{l{x}}x—:— B{ll}fl —l-+ ++Blli§}K

\ dé—f = Ak} + Bixk&1 + -+ + Bxkék
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Why is fitting dynamics so hard?

dt 5
+AP) FoF

+ Agg}f 0T

dz
dt

= A @

N
D)
g Few params.; Many
—
< il
S bl s Bpns:; ft
5 T anything
-
o
= Space of
o
2o models
ﬁ
More hidden variables
( § = Ay @+ Bipi&o + - + By rér
= A1fsyT + B11§1 + - + Bixék

\ dﬁf = Ay ¥+ Bix&1 + -+ Brxék

* Hidden degrees of freedom and nonlinearities breaks nestedness -- no consistency.

e Choose any (reasonable) complete path through the model space
— Good choice — good fits with little data; Bad choice — not worse than exhaustive

search.

Y (@) ¢
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Two types of model families

* Both nested and complete.
e Account for nonlinearities and hidden variables.

e Biologically reasonable.

Daniels and Nemenman, Nature Comm 2015; PLoS ONE 2015
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Two types of model families

* Both nested and complete.
e Account for nonlinearities and hidden variables.

e Biologically reasonable.

Degradation Interactions Input

Sigmoidal = dz . -

gy :_xi/Ti+ZWij §($j—|—(9j)—|—zv;'klk ‘
recurrent i o (X
networks with &{(y) = 1/(1 +e7Y) [

Daniels and Beer,
arXiv 2010

Daniels and Nemenman, Nature Comm 2015; PLoS ONE 2015
W EMORY Ilya Nemenman, KITP-SNAV 8,/2018

UNIVERSITY



Two types of model families

* Both nested and complete.
e Account for nonlinearities and hidden variables.

e Biologically reasonable.

Degradation Interactions Input

Sigmoidal = dz

J K
[
- =—$i/7¢+;Wz’j §($j+9j)+;::1‘/}kfk | Q

recurrent —
networks with £(y) = 1/(1 +e7Y) [

Daniels and Beer, W/

arXiv 2010 Interactions and input dependence
S

S-S)’Stems Az Aij Qik Bij bir | 3
Savageau et al., 1976-... dt A H Lj 1;[ Iy — B H L 1;[ I "1

Daniels and Nemenman, Nature Comm 2015; PLoS ONE 2015
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Finding laws that we already know:
An automated Sir Isaac (Sirlsaac on GitHub)

A
To
— 1.00 (circle)
&> 100 H — 1.25 (ellipse)
— 1.50 (ellipse)

(
(
(
— 1.75 (ellipse)
(
(
(

80 H 2.00 (parabola) G
2.25 (hyperbola) v
— 2.50 (hyperbola) pd
60

N
)

*********************************

Distance from sun (units G M /v

[\
@)

/) (P
R ety St t s
R pupae >< ]. '1\\\‘-*<.4.~._._<_ pup—
Namm——e -~

««««««««««««««««

Liaa]rg = 2.5 (hyperbola) [ ----==F =27
__1 1'#&:\\\i " T O 1 R S
0 50 100 150 20 0 2 4 6 8 0 2 4

r r

Time (units G M /vg)

 Finds the hidden variable needed to account for the Newton’s laws.

e Accounts for different classes of trajectories.

Daniels and Nemenman, Nature Comm 2015, PLoS ONE 2015
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Test Model:
Yeast Glycolytic Oscillator

@) Extornal Glucose * / species, 28 parameters

- cytosol Glucose (S,) * Complex rational dynamical
R R laws

E » Glycerol

| ATP (A;) _“GAP (S,)

v = N -
| v o '
: l o NAD (N,)
: X v T 4
{ ADP (A,) BPG (5,) NADH (N,)

Vs

v :
Pyruvate +» Ethanol

& Va '
Acetaldehyde (S,)

SRR b o ) s I-:’: .....................
Extracellular
space External Pyruvate/
Acetaldehyde (Sy)

lw

Exact Model

Ruoff et al., 2003
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The yeast glycolytic oscillations:
Complex dynamics needing complex structure

» Observe only 3/7 of variables; add iy, it
10% noise.

e Data: N samples of structure TiNinEst
— Initial condition of the 3 species; SEEIERRS
— Some random time later; N S

— The value of these 3 species at that
time.

n
W
o o
o )

Sa

o o
o W

Species concentration (mM)

2
N

o
b

>
O ¢
N O

. .
SaE 0.1}t -
0.0

01234012345
Time (minutes)
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Results Daniels and Nemenman, Nature Comm 2015; PLoS ONE 2015

o, “rane,, @ ~100x fewer evaluations

S ﬂ\
» | f&
'a. 2.6

> L 1 for the same accuracy
siiag R Ae I _.\\ \ / 5113 f compared to full search.
[V Ve e /)

00 il < —400 'f " " - e ~1000x fewer data
Ssrap o, ot S2 13¢ JUU\ AAM points than full search.
) g aPn i e 08 2% o0 U !

2 0 o@ @ LA §§ 06 .’.' . 0o
3 S8 05 s » Better accuracy than
ER0 i nspiamg© 00 o curve fitting.
g si03 JA A x NN\ e Linear scaling with the
o 0.0 —4 .
& N 0.2 o, Mmmesemens N oy amount of data and with
o0 e L . -  the number of variables.
3 S% 0.6 S ¢
0 e 04} "7 -2 ; . . .
55 0.1 28 02 ¥ vrreteiziit e Finds conservation laws.
0003234012345 = 01 2 3 4 ime (minutes)
Computational effort

Time (minutes) (x 10® model evals)
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Modeling C. elegans temperature nociception
escape response

S A N\
- -
0_8 g ! r~ - T
N / 7
0.6 4 '
&4 f - : /
0.24 stage Y pos. =0 da /
stage X pos/O / r / /
0 S ’ A f ’
o L OS5, 117 * ol ]
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Modeling C. elegans temperature nociception
escape response

S A N\
- -
0_8 g ! r~ - T
N / 7
0.6 4 '
&4 f - : /
0.24 stage Y pos. =0 da /
stage X pos/O / r / /
0 S ’ A f ’
o L OS5, 117 * ol ]
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Question: what is the logic of this behavior?

Distinct
behavioral
attractors

forward

reverse

Continuously
varying

behavior
Freverse

forward
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Worm nociception: Data and fits

SGD style training

2.0 1o
20 -
44
—~ L ()
) 10 2
2 o : :
— 1.5 '8 ©
go) - o
3 3 T
Q _on| Laser (mA) |\ & 6 2
@ — 9-34 \ = i E
o) 34-67 i 4 0
3: —— B7-86 1.0 2
_40{ — 86-120 o
—— 120-178 2 3
. | x?/ dof —— Num. parameters
—1 0 1 2 3 00 05 1.0 15 20 O
Time (s) Number of datapoints per trial

Daniels, Ryu, IN, in prep.
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Comparing to hand-curated model

Sir Isaac model Curated model
o 1 : . . ,
% c 09 | control
= 2 0.8 b '| ibuprofen
‘;‘ 0.8 g v mutant
i © 0.7 F
o 2
o 205
& o
c 0.4 S04}
2 5 0.3}
c S 0.2
C - —_v.ar
5 8 0.1}
o L X \
Lt O-O I T T T 0 A 4
1.0 1.5 2.0 2.5 3.0 3.5 1 1.5 2 time (a )2-5 3 3.5
Time (s)
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What is the logic of the behavioral dynamics?

A single attractor

80
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What is the logic of the behavioral dynamics?

A single attractor
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Why should you believe our model?
The predictions

>
oo

e Sirlsaac model
Data
@ Binned data

Data
- Sirlsaac model
¢ Binned data

—
N
—
N

— —
(o)) 0¢] o )\
—h —
(o)) (00) o N

N
I

(seconds after laser onset)
®

N
Time of change to forward motion

Time of change to forward motion
(seconds after laser onset)

N

o
o

0 50 100 150 200 0 20 40 60 80 100
Laser intensity (mA) Peak reverse speed (px/s)
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Interpreting the model

d W W
o T L V() - n oy B
dt T 1 +evtf1 1 4 e

dxg

dat

||
|
S
\)
_|_
S
=

Forward

Recovery,

Type A
interneurons

Speed,
Backward u v

Drive, V1

Type B
interneurons

Laser,
h(Y)

Integration,
AFD, FLP Vs \‘
AFD, FLP
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Summary lI
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Summary lI

e Deemphasize “truth” of a model, focus on accuracy of
prediction and on refining (not coarse-graining)
phenomenological dynamics.

e Complete, nested model families of dynamics allow to use
Bayesian model selection to adapt model complexity.

e Such phenomenological models make accurate and
interpretable predictions, at least for the worms.

e Why do this”? Go from models to phenomenological

theories

— Repeat Hookean approach in biology: build effective models of similar systems
and look for patterns (e.g., chemotaxis in C. elegans and E. col).
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