

Cosmological Results from the SNLS (and some connections with host galaxies)

Mark Sullivan

University of Toronto

Full list of students and associates at: http://cfht.hawaii.edu/SNLS/

How do we measure dark energy?

$$H^{2}(a) = H_{0}^{2} \left[\Omega_{m} a^{-3} + \Omega_{k} a^{-2} + \Omega_{X} a^{-3(1+w)} \right]$$

Matter component

Curvature

Dark energy component

- w=P/ρ
- \bullet Broad possibilities for Ω_X or dark energy
 - "Cosmological constant": w=-1 across space and time
 - "Quintessence" class models: w>-1
 - "Phantom energy": w<-1 (GR incomplete?)</p>
- Determine w(a) for dark energy component
 - 1. Is <w> consistent with -1?
 - 2. Is w constant?
 - 3. What is w(a)?

Making a standard candle

1. "Phillips relation": A correction to SN Ia light-curves based on light-curve shape drastically improves the quality of the standard candle.

Making a standard candle

- 1. "Phillips relation": A correction to SN Ia light-curves based on light-curve shape drastically improves the quality of the standard candle.
- 2. SN colour: A correction to the SN luminosity based on the SN colour

Making a standard candle

- 1. "Phillips relation": A correction to SN Ia light-curves based on light-curve shape drastically improves the quality of the standard candle.
- 2. SN colour: A correction to the SN luminosity based on the SN colour

Many methods:

- Stretch Perlmutter 97, 99
- (M)LCS(2k2) Riess, 95,96, Jha 07
- SALT(2) Guy 05, 07
- CMAGIC Wang et al., Conley et al.
- Δm₁₅ Phillips 93; Hamuy 95; Prieto 06

"Local" SN la Hubble Diagrams

Most light-curve fitting techniques fare equally well

Jha et al. 2007

Prieto et al. 2006

Supernova Legacy Survey (2003-2008)

- 5 year survey, goal: 500 distant SNe la to measure "w"
- Uses CFHT/"Megacam"
- 36 CCDs, good blue response
- 4 filters for good k-corrections and color measurement

Supernova Legacy Survey

Imaging

Distances from light-curves

Discoveries Lightcurves

g'r'i'z' every 4 days during dark time

<u>Spectroscopy</u>

Redshifts ->
Distances from cosmological model

Gemini N & S (120 hr/yr)

Keck (8 nights/yr)

VLT (120 hr/yr)

Magellan (Host galaxies)

Current status

- Survey running for 3.5 years
- >300 confirmed distant SNe Ia
 - Largest single telescope sample of (high-z?) SNe la
 - "On track" for 500 spectroscopically confirmed SNe la by survey end (2000 in total)

SNLS 1st year

$$\mu_B = m_B - M_B + \alpha(s-1) - \beta \times c$$

Cosmological Constraints (Preliminary)

7% measure of w

Coming soon: w(a); <w> in a non-flat Universe; Full WMAP-3 analysis (CosmoMC); Riess et al. (2007) added in

Host galaxies impact SN properties

SN la Light-curve shape depends on morphology

e.g. Hamuy et al. (2000)

Some evidence that SNe Ia in ellipticals show smaller scatter

Sullivan et al. (2003)

Typing of SNLS SN Ia hosts

SNLS: SN rate as a function of sSFR

SN Ia hosts classified by star-formation activity

Per unit stellar mass, SNe are at least an order of magnitude more common in more vigorously starforming galaxies

SNLS "passive" galaxies

SN la Stretch dependencies

Stretch by galaxy starformation activity

Stretch versus mean age

170 SNe la

(Update from Sullivan et al. 2006; better zeropoints, host photometry, more SNe)

SN population drift?

Relative mix of evolves with redshift

A+B
predictions,
but similar for
any two
component
model

Sullivan et al. 2006

Evolution in Stretch?

Gaussians – predicted evolution from A+B model

Average stretch, and thus average *intrinsic* brightness of SNe la evolves with redshift

but

if stretch correction works perfectly, this should not affect cosmology

Howell et al. 2007

SN Subsets

Passive

 $\alpha \sim 1.6 \pm 0.2$ $\beta \sim 1.7 \pm 0.2$ $\sigma \sim 0.10$ mag

Star-forming

 $\alpha \sim 1.6 \pm 0.2$ $\beta \sim 2.4 \pm 0.2$ $\sigma \sim 0.16$ mag

(No) Evolution in mean spectrum?

Intensive Keck/LRIS study of SNLS SNe Ia

> z=0 (red) compared to z=0.5 (black)

Light-curve width dependence

Future Prospects with SNLS

- Current constraints on <w>: <w>=-1 to ~ 6-7% (stat)
 - <w>>-0.8 excluded at 3-sigma level
- At survey end a 4-5% statistical measure will be achieved:
 - 500 SNLS + 200 SDSS + z>1 + new local samples
 - Improved external constraints (BAO, WMAP, WL)
- Progenitor age appears an important factor affecting stretch/Δm₁₅
 - Stretch depends on host SFR/Age WHY??
- SNe in passive galaxies are better standard candles
 - More homogeneous progenitors? or dust?