Determining the Type, Redshift, & Phase of a Supernova Spectrum

Stéphane Blondin (CfA,KITP)

in collaboration with John Tonry (IfA)

Blondin & Tonry, astro-ph/0612512 Blondin & Tonry, in prep

KITP - SNOVAE07 - 1 Feb 2007

Layout

- 1. Motivation
- 2. Supernova classification
- 3. Cross-correlation techniques
- 4. Redshift & Phase determination
- 5. Type determination

Layout

1. Motivation

classify new SNe

select SNe of a given type for large surveys (e.g. SN Ia) cosmology with SNe Ia (redshift determination) comparative studies of SN types

- 2. Supernova classification
- 3. Cross-correlation techniques
- 4. Redshift & Phase determination
- 5. Type determination

SNe by the 1000s

High-z SN la searches

Layout

1. Motivation

2. Supernova classification

Type I vs. Type II Thermonuclear (Ia) vs. core-collapse (Ib/c, II) Line identification problem Difficulty of classification at high-z

- 3. Cross-correlation techniques
- 4. Redshift & Phase determination
- 5. Type determination

Line identification

Layout

- 1. Motivation
- 2. Supernova classification
- 3. Cross-correlation techniques

Tonry & Davis algorithm (1979) SNID, the **S**uper**N**ova **ID**entification code Spectrum pre-processing The *rlap* diagnostic

- 4. Redshift & Phase determination
- 5. Type determination

SN spectral database

Spectrum pre-processing

Spectra are: (b) binned, (c) flattened, and (d) filtered

input *F_λ*, *F_ν*, ADU, ℜ
[*] insensitive to reddening
[*] less sensitive to galaxy contamination

• see [*]

V

Bandpass filtering

All correlation signal at **low** k ($k \sim 25$)

k > 100: high-freq. noise

k < 5:

low-freq. residuals from continuum subtraction

A typical SN template

Type la SN 1992A (Kirshner et al. 1993)

"It looks as if Some pallid thing had squashed its features flat..."

Robert Frost

Correlation *r*-value

Correlation parameters:

r ratio of height of correlation peak to RMS of antisymmetric component

lap overlap in rest wavelength between input and template spectrum, trimmed at correlation redshift

 $rlap = r \times lap$

$$z_{\rm err} \propto w / (1 + rlap)$$

Correlation functions

The *perfect*,

, the **good**,

and the bad

Spectrum overlap

Layout

- 1. Motivation
- 2. Supernova classification
- 3. Cross-correlation techniques
- 4. Redshift & Phase determination

Comparison with external measurements Redshift / Phase covariance

5. Type determination

SN vs. Galaxy redshifts

data from **ESSENCE** (Matheson et al. 2005; Miknaitis et al. in prep)

Phase determination

Spectrum vs. lightcurve phase

Redshift/phase covariance

Redshift/phase covariance

Over-estimation of phase \Rightarrow **Under**-estimation of redshift

Effect of z, t priors

Layout

- 1. Motivation
- 2. Supernova classification
- 3. Cross-correlation techniques
- 4. Redshift & Phase determination
- 5. Type determination

"Peculiar" vs. "normal" SNe Ia at z=0.5Type Ic vs. Type Ia supernovae at z=0.5

"Peculiar" vs. "normal" SN la

SN la vs. SN lc

Conclusions

With the SuperNova IDentification (SNID) code, one can:

- ✓ distinguish between SN types at high redshifts (z = 0.5)
 > 91T-like SN Ia and SN Ic "contaminants"
- ✓ determine SN **redshifts** with $\sigma_z \le 0.01$ out to $z \ge 0.8$
- ✓ determine the **phase** of a SN spectrum with $\sigma_t \le 3$ days
- ...and observation / model comparisons

Coming Soon! Public release on the CfA SN webpage: http://www.cfa.harvard.edu/oir/Research/supernovae/