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Improvements to Flame Model

Energetics of flame and post-flame evolution (Calder et al., Townsley

et al.)

Noise/stability of model flame (Townsley et al.).

(Removal of) effect of curvature due to thickened ADR flame (Asida

et al.)

Ongoing verification of the turbulent sub-grid model (Zhang et al.)

Migration from Flash2 to Flash3

Migration to non-permanent guard cell mode of PARAMESH3 

(memory saving)

Switch to Ye, Q formalism (memory saving)

Streamlining/improving of self-gravity module (in progress)
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Astrophysical Flames

A burning front may propagate 
supersonically (detonation) or subsonically 
(deflagration/flame).

An astrophysical flame propagates via the 
conduction (transport) of heat that pre-
heats the fuel, initiating the reactions. 

The schematic shows a simple, one-
reaction case of a deflagration.

Somewhat aside: Most contemporary Ia
models incorporate a transition from a 
deflagration to a detonation. The physics of 
such a transition is under active study.
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Fluid Instability in a Type Ia Supernova

Note: Even with AMR, the 

disparate scales of Ia

necessitate use of a model 

flame and a sub-grid-scale 

model for turbulent 

combustion.

Use an Advection 

Diffusion Reaction (ADR) 

scheme to propagate a 

thickened flame.

Subgrid model should 

capture effects of RTI 

on unresolved scales.
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One senario: Gravitationally Confined Detonation

Run on IBM BG/L at Watson
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Flame Model Implemented in Flash

“Thick flame” based on an advection-reaction-diffusion equation model 

(Khokhlov 1995)  ∆ = 4 zones

Flame speed is input parameter to the model

Input flame speed is the maximum of the laminar or the turbulent

model speed, S = max(Slam,Ssub)

Slam from Timmes and Woosley (1992)

Ssub from Khokhlov (1995)

Two principal parts to the problem:

Flame model 

ADR scheme for thick flame including energy release in stages

Evolution of the NSE ash.

Sub-grid-scale model for turbulent combustion
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Evolution Equations
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Evolution Equations
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Energetics Procedure

Perform self-heating (one-zone) network calculations with contemporary 

reaction rates (including weak reactions) and Coulomb effects.

Energy release

Time scales for stages of burning

Compare to DNS flames where possible for verification.

Track long-term evolution of NSE (binding energy and neutronization) 

with NSE code consistent with network calculations.

Incorporate both into multi-stage flame model and dynamic NSE ash.

Test, test, and test some more.

ADR scheme (verify and quantify noise and curvature effects)

Non-energetics test: Verify subgrid turbulence model
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Nuclear Flames

C/O Fuel Ash (� NSE)

DNS

Self-heating

C/O Fuel Ash (� NSE)

 Flame propagation

Both with aprox19 

network

ρ = 109 g/cm3
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Three-Stage Flame Model

Energy released in flame and ash are both important

50% of energy
50% of energy

∆∆∆∆ 50% of 
energy

Flame propagation �
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NSE and Self-Heating Calculations

Nuclear Statistical Equilibrium code: 

Solves NSE equations for 238 nuclides

Recent work has more (443)

Includes excited states (Rauscher et al. 1997)

Includes Coulomb corrections to Helmholtz free energy

Calculates energy, ν loss rates, and neutronization rates

Self-heating network code: Isochoric (constant volume) and isobaric 
(constant pressure) burning

200 nuclide network

Temperature dependent nuclear partition functions from Rauscher 
and Thielemann (2000)

Reverse rates derived for first time self-consistently from forward 
rates with Coulomb effects included

Include electron screening  (Wallace et al.1982)

Isobaric and isochoric results
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Nuclides involved
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Self-Heating Network Study

Binding 

Energy 

to Tap
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Self-Heating Network Study
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Average Binding Energy per Nucleon

T, ∆Q

α particles

56Ni

50% 56Ni
Self-heating results50% 4He

Ye = 0.5
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Post Flame Energy Release

Ye = 0.5



Stony Brook Nuclear Astrophysics

Neutronization Rates

Ye = 0.5
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Surrogate Nuclei
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Three-Stage Flame Model

Flame propagation �
ρ = 3 X 109 g/cm3
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Verification Test

ρ = 109 g/cm3
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Noise quantification

 velocity results

 pressure results

256 zones

512 zones

1024 zones

s = 6 X 106 cm/s
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…and that leads us to

QUESTIONS AND DISCUSSION
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