X-rays and γ-rays from classical novae: constraints on models from the observations

**Margarita Hernanz** 

Institut d'Estudis Espacials de Catalunya IEEC-CSIC Barcelona (Spain) & KITP

Basic scenario of classical novae
 γ-rays: theory, observations, challenges for instrumentation
 X-rays: lessons from XMM-Newton observations and from ROSAT (Nova Cyg 1992)

9 May 2007 KITP – Accretion and Explosion: The Astrophysics of Degenerate Stars M

# X-rays and γ-rays from classical novae: constraints on models from the observations

# **PART I**

Basic scenario of classical novae

γ-rays: theory, observations, challenges for instrumentation

X-rays: lessons from XMM-Newton observations and from ROSAT (Nova Cyg 1992)

9 May 2007 KITP – Accretion and Explosion: The Astrophysics of Degenerate Stars

### **BASIC SCENARIO**

Mass transfer from the companion star onto the white dwarf (cataclysmic variable) Hydrogen burning in degenerate conditions on top of the white dwarf Thermonuclear runaway **Explosive H-burning** 



Decay of short-lived radioactive nuclei in the outer envelope (transported by convection)

Envelope expansion, L increase and mass ejection

# Nova Models: Thermonuclear Burning of Hydrogen. CNO cycle



| Why novae emit γ-rays? |                                                             |                                            |                                |            |  |  |  |
|------------------------|-------------------------------------------------------------|--------------------------------------------|--------------------------------|------------|--|--|--|
| Explosiv               | Explosive H-burning: synthesis of $\beta$ +-unstable nuclei |                                            |                                |            |  |  |  |
|                        | <sup>13</sup> N <sup>14</sup> C                             | ) <sup>15</sup> O <sup>1</sup>             | <sup>7</sup> F <sup>18</sup> F |            |  |  |  |
|                        | τ 862s 102                                                  | 2s 176s 9                                  | 3s 158min.                     |            |  |  |  |
|                        |                                                             | ucial for env<br>be expansio               | e-<br>n                        |            |  |  |  |
|                        | crucial fo<br>(through                                      | or γ-ray emis<br>e <sup>-</sup> -e+ annihi | ssion<br>lation)               |            |  |  |  |
| Other                  | <sup>7</sup> Be                                             | <sup>22</sup> Na                           | <sup>26</sup> AI               |            |  |  |  |
| radioactive            | τ 77days                                                    | 3.75yrs                                    | 10 <sup>6</sup> yrs            |            |  |  |  |
| nuclei                 | line 478keV                                                 | 1275keV                                    | 1809keV                        |            |  |  |  |
| SyntheSizeu            | e-capture                                                   | e+-em                                      | nission                        |            |  |  |  |
| 9 May 2007 KITP -      | Accretion and Explosion: T                                  | he Astrophysics of                         | of Degenerate Stars            | M. Hernanz |  |  |  |

# Radioactive isotopes synthesized in classical novae relevant for their $\gamma$ -ray emission

| Nucleus               | τ                      | Type of emission                                | Nova type  |
|-----------------------|------------------------|-------------------------------------------------|------------|
| <sup>13</sup> Ν (β+)  | 862 s                  | 511 keV line<br>continuum (E<511 keV) CO and OI |            |
| <sup>18</sup> F (β+)  | 158 min                | 511 keV line<br>continuum (E<511 keV)           | CO and ONe |
| <sup>7</sup> Be (ec)  | 77 days                | 478 keV line                                    | CO mainly  |
| <sup>22</sup> Na (β+) | 3.75 yr                | 1275 keV line                                   | ONe        |
| <sup>26</sup> ΑΙ (β+) | 1.0X10 <sup>6</sup> yr | 1809 keV line                                   | ONe        |

# Spectra of CO novae

 $M_{WD} = 1.15 M_{\odot}$ 



- e<sup>-</sup>-e<sup>+</sup> annihilation and Comptonization:
   continuum and 511 keV line;
   e<sup>+</sup> from <sup>13</sup>N and <sup>18</sup>F
   ➡ Leising & Clayton 1987
- photoelectric absorption
   ⇒ cutoff at 20 keV
- 478 keV line from <sup>7</sup>Be decay
  → Clayton 1981

• transparent at 48 h

#### Gómez-Gomar, Hernanz, José, Isern,1998, MNRAS Hernanz et al 1999, ApJL, 2002...NewAR

9 May 2007 KITP – Accretion and Explosion: The Astrophysics of Degenerate Stars

# Spectra of ONe novae



 $M_{WD} = 1.15 M_{\odot} \text{ (solid)}$ 1.25  $M_{\odot} \text{ (dotted)}$ 

- photoelectric absorption
   cutoff at 30 keV
- continuum and 511 keV as in CO novae
- 1275 keV line from <sup>22</sup>Na decay
  - → Clayton & Hoyle, 1974
- similar behaviour for the 2 models, because of similar KE and yields

### Light curves: 1275 keV (<sup>22</sup>Na) & 478 (<sup>7</sup>Be) lines



9 May 2007 KITP – Accretion and Explosion: The Astrophysics of Degenerate Stars M. Hernanz

### **Observations:1275 keV line (22Na) from novae**



Fig. 1. Sum of residual spectra of Nova Her 1991 for the viewing periods 7.5, 13.0, 20 and 231. Statistical 1  $\sigma$  error bars are shown. The dashed line represents the expected <sup>22</sup>Na line appearance according to the ejecta mass derived by Woodward et al. 1992, with a <sup>22</sup>Na mass fraction of model 3 of Starrfield et al. 1992. This signal would have been seen by COMPTEL at the significance level of ~ 8  $\sigma$ 



Fig. 2. Sum of the background-subtracted spectra of Nova Cyg 1992 for the viewing periods 34, 203 and 212. Statistical error bars are shown. The dashed line represents the expected <sup>22</sup>Na line appearance according to the predictions of Starrfield et al. 1992. This signal would have been seen by COMPTEL at the significance level of  $\sim 17 \sigma$ 

### CGRO/COMPTEL: no detection; upper limits Iyudin et al. 1995, A&A

9 May 2007 KITP – Accretion and Explosion: The Astrophysics of Degenerate Stars

# Observations : 1275 keV line (<sup>22</sup>Na)

#### CGRO/COMPTEL upper limits: lyudin et al. 1995, A&A

Table 2. List of the recent novae searched for the presence of <sup>22</sup>Na line emission and the derived upper limits.

| Nova<br>name | Galacti<br>l | c<br>b | Date of max m <sub>v</sub> | Nova<br>type | 2 σ up. lim.<br>ph./(cm <sup>2</sup> s) |                                                           |
|--------------|--------------|--------|----------------------------|--------------|-----------------------------------------|-----------------------------------------------------------|
| Cen 1991     | 309.5°       | -1.04° | 17-Mar-91                  | stand.       | 4.0E-05                                 |                                                           |
| Her 1991     | 43.3°        | 6.6°   | 24-Mar-91                  | neon         | 3.3E-05                                 |                                                           |
| Sgr 1991     | 0.18°        | -6.94° | 29-Jul-91                  | neon         | 6.2E-05                                 | her that her that we                                      |
| Sct 1991     | 25.1°        | -2.80° | 08-Aug-91                  | neon         | 3.6E-05                                 |                                                           |
| Pup 1991     | 252.7°       | -0.72° | 27-Dec-91                  | neon         | 5.5E-05                                 | NA (22NI=) 0 - 40 8NA                                     |
| Cyg 1992     | 89.14°       | 7.82°  | 20-Feb-92                  | neon         | 2.3E-05                                 | $\implies$ $M_{ei}(^{22}Na) < 3 \times 10^{-6} M_{\odot}$ |
| Sco 1992     | 343.8°       | -1.61° | 26-May-92                  | stand.       | 5.9E-05                                 |                                                           |
| Sgr 1992-1   | 4.75°        | -2.0 ° | 06-Feb-92                  | stand.       | 6.0E-05                                 | for d=1.7 kpc                                             |
| Sgr 1992-2   | 4.56°        | -6.96° | 19-Jul-92                  | stand.       | 3.0E-05                                 |                                                           |
| Sgr 1992-3   | 9.38°        | -4.54° | 29-Sep-92                  | stand.       | 4.4E-05                                 | Upper limits in                                           |
| Aql 1993     | 36.81°       | -4.10° | 17-May-93                  | stand.       | 6.2E-05                                 | agreement with current                                    |
|              |              |        |                            |              |                                         | theoretical predictions                                   |

# Observations: 478 keV line (7Be)

RESULTS FOR 478 keV LINE FLUXES AND 7Be YIELDS

|     |                        | _                             |                       | F<br>(γ cn            | $\int LUX n^{-2} s^{-1}$ | - 7 <b>-</b> -                                                  |
|-----|------------------------|-------------------------------|-----------------------|-----------------------|--------------------------|-----------------------------------------------------------------|
|     | TARGET                 | DISTANCE <sup>a</sup><br>(pc) | ZENITH ANGLE<br>(deg) | Observed <sup>b</sup> | Expected <sup>e</sup>    | IMPLIED 'Be MASS <sup>®</sup><br>$(M_{\odot} \text{ per Nova})$ |
| •   |                        |                               | Individual 1          | Novae                 |                          |                                                                 |
| •   | Undiscovered nova      |                               | 60                    | $1.0 \times 10^{-4}$  |                          |                                                                 |
|     | BY Cir                 | 3160                          | 45                    | $6.8 \times 10^{-5}$  | $1.1 \times 10^{-5}$     | $3.0 \times 10^{-8}$                                            |
| 000 | V888 Cen               | 4800                          | 42                    | $6.3 \times 10^{-5}$  | $4.9 \times 10^{-6}$     | $6.4 \times 10^{-8}$                                            |
| GRS | V4361 Sgr              | 6700                          | 95                    | $1.1 \times 10^{-4}$  | $2.5 \times 10^{-6}$     | $2.2 \times 10^{-7}$                                            |
|     | CP Cru                 | 3180 <sup>d</sup>             | 37                    | $8.8 \times 10^{-5}$  | $2.2 \times 10^{-6}$     | $3.9 \times 10^{-8}$                                            |
|     | V1141 Sco              | 6120                          | 97                    | $1.6 \times 10^{-4}$  | $3.0 \times 10^{-6}$     | $2.7 \times 10^{-7}$                                            |
|     | V1370 Aql <sup>e</sup> | 3500                          |                       | $1.2 \times 10^{-3}$  | $1.8 \times 10^{-6}$     | $6.3 \times 10^{-7}$                                            |
| MM  | QU Vul <sup>e</sup>    | 3000                          |                       | $7.5 \times 10^{-4}$  | $2.5 \times 10^{-6}$     | $3.1 \times 10^{-7}$                                            |
|     | V842 Cen <sup>e</sup>  | 1100                          |                       | $9.6 \times 10^{-4}$  | $9.3 \times 10^{-5}$     | $5.2 \times 10^{-8}$                                            |
| •   |                        |                               | GC Integr             | ated                  |                          |                                                                 |
|     | TGRS                   | 8000                          | 84.5                  | $7.7 \times 10^{-5}$  | $7.8R_N \times 10^{-8}$  | $3.4 \times 10^{-6} / R_N^{f}$                                  |
|     | SMM                    | 8000                          |                       | $1.5 \times 10^{-4}$  | $1.6R_N \times 10^{-7}$  | $3.5 \times 10^{-6} / R_N^{\rm f}$                              |
| Th  | neory: F<2.5x10        | $-6/d_{kpc}^{2}$              |                       | Harris et             | al. 1991 and             | d 2001                                                          |

9 May 2007 KITP – Accretion and Explosion: The Astrophysics of Degenerate Stars

# e<sup>-</sup> - e<sup>+</sup> annihilation emission

9 May 2007 KITP – Accretion and Explosion: The Astrophysics of Degenerate Stars M. Hernanz

# Light curves: 511 keV line



| Model                    | t <sub>max</sub> * (h) | F <sub>max</sub> (ph/cm <sup>2</sup> /s) <sup>**</sup> |
|--------------------------|------------------------|--------------------------------------------------------|
| CO, 0.8 M <sub>⊙</sub>   |                        | 2.6 x 10 <sup>-5</sup>                                 |
| CO, 1.15 M <sub>☉</sub>  | 6.5                    | 5.3 x 10 <sup>-4</sup>                                 |
| ONe, 1.15 M <sub>o</sub> | 6                      | 1.0 x 10 <sup>-3</sup>                                 |
| ONe, 1.25 M <sub>o</sub> | 5                      | 1.9 x 10 <sup>-3</sup>                                 |

 511 keV line in ONe novae remains after 2 days until ~ 1 week because of e<sup>+</sup> from <sup>22</sup>Na

- Intense (but short duration)
- Very early appearence, before visual maximum (i.e, before discovery)

WARNING: nuclear reaction rates affecting <sup>18</sup>F still uncertain (<sup>17</sup>O+p <sup>18</sup>F+p)

# Light curves: 511 keV line and continuum





# Light curves: 511 keV line. Influence of v<sub>ejec.</sub>



9 May 2007 KITP – Accretion and Explosion: The Astrophysics of Degenerate Stars M. Hernanz

# Gamma-ray and visual light curves



Continuum & 511 keV line, (e<sup>-</sup>-e<sup>+</sup> annihilation), are intense, but very short and before visual discovery

detection requires "a posteriori" analyses with wide FOV instruments CGRO/BATSE WIND/TGRS, RHESSI, SWIFT/BAT

future hard X/soft γ-ray surveys like EXIST can provide unique information about the Galactic nova

9 May 2007 KITP – Accretion and Explosion: The Astrophysic Clistic Distribution and Explosion and Explosion: The Astrophysic Clistic Distribution and Explosion and

### **Observations: 511 keV line**

#### WIND/TGRS: no detection; upper limits

#### UPPER LIMITS ON 511 keV LINE EMISSION FROM NOVAE

| Nova          | Angle of Incidence<br>(deg) | Mean 3 $\sigma$ Upper<br>Limit in 6 hr<br>(photon cm <sup>-2</sup> s <sup>-1</sup> ) |
|---------------|-----------------------------|--------------------------------------------------------------------------------------|
| Nova Cir 1995 | 44.9                        | $2.2 \times 10^{-3}$                                                                 |
| Nova Cen 1995 | 42.0                        | $2.0 \times 10^{-3}$                                                                 |
| Nova Sgr 1996 | 95.2                        | $2.8 \times 10^{-3}$                                                                 |
| Nova Cru 1996 | 36.9                        | $2.3 \times 10^{-3}$                                                                 |
| Nova Sco 1997 | 83.4                        | $2.9 \times 10^{-3}$                                                                 |

 Observation of 5 known Galactic novae in the broad TGRS FOV in the period 1995 Jan - 1997 June

 High E-resolution Ge detector: ability to detect 511 keV line blueshifted w.r.t. background line Harris et al. 1999, ApJ

9 May 2007 KITP – Accretion and Explosion: The Astrophysics of Degenerate Stars

## **Observations: 511 keV line**

WIND/TGRS: "constraining" the Galactic nova rate from a survey of the Southern Sky during 1995-1997

From the non detection, an upper limit of the Galactic nova rate was extracted:

< 123 yr<sup>-1</sup> (CO novae; r<sub>detect</sub>: 0.9 kpc)

< 238 yr<sup>-1</sup> (ONe novae; r<sub>detect</sub>.: 0.7 kpc)

Promising for future wide FOV instruments sensitive in the soft  $\gamma$ -ray range (20-511) keV

Harris et al. 2000, ApJ

### **Observations: 511 keV line**

#### CGRO/BATSE

#### List of nearby novae (d < 3-4 kpc) since CGRO launch

| 3.2                   | Pup91  | Sgr92#1 | Cyg92  | Sco92  | Cas93 | Aql95 | Cir95  | Vel99  |
|-----------------------|--------|---------|--------|--------|-------|-------|--------|--------|
| Date of discovery     | Dec 27 | Feb 13  | Feb 19 | May 26 | Dec 8 | Feb 7 | Jan 27 | May 22 |
| m <sub>v</sub> (max.) | 6.4    | 7.3     | 4.2    | 7.3    | 5.3   | 8.1   | 7.2    | 2.8    |
| t <sub>2</sub> (d)    | 15     | 4-14    | 16     | 73     | 33    | 11    | 20     | 6      |
| d (kpc)               | 2.9    | 3.6     | 1.7    | 0.8    | 2.8   | 1.9   | 4      | 2      |

• Only upper limits, compatible with theory

• The 3- $\sigma$  sensitivity using the 511 keV line only is similar to that of Harris et al. 1999 with Wind/TGRS

Hernanz, Smith, Fishman, et al., 2000, Proc. 5<sup>th</sup> CGRO Symp.

9 May 2007 KITP – Accretion and Explosion: The Astrophysics of Degenerate Stars

### Prospects for detectability with INTEGRAL/SPI

Table 1. SPI  $3\sigma$  detectability of <sup>7</sup>Be (478 keV) and <sup>22</sup>Na (1275 keV) lines from classical novae<sup>\*</sup>

| Line (E $\Delta$ E,keV) | ${ m t_{obs}(ks)}$ | $F_{min} (ph/cm^2/s)$ | d(kpc) |
|-------------------------|--------------------|-----------------------|--------|
| 478 (8)                 | $10^3$             | $7.98	imes10^{-5}$    | 0.16   |
| 478(8)                  | $1.2	imes10^3$     | $7.28	imes10^{-5}$    | 0.17   |
| 478 (8)                 | $2.4	imes10^3$     | $5.15	imes10^{-5}$    | 0.20   |
| 1275 (20)               | $10^{3}$           | $7.28	imes10^{-5}$    | 0.52   |
| 1275(20)                | $1.2	imes10^3$     | $6.64	imes10^{-5}$    | 0.55   |
| 1275(20)                | $2.4	imes10^3$     | $4.70	imes10^{-5}$    | 0.65   |

\*  $F_{min}$  are the fluxes which would give a  $3\sigma$  detection of the lines, with the quoted observation times, which have been computed with the Observation Time Estimator for INTEGRAL *OTE*. The detectability distances have been computed adopting as model fluxes for the 478 keV and 1275 keV lines, at 1 kpc,  $2 \times 10^{-6}$ and  $2 \times 10^{-5}$  ph/cm<sup>2</sup>/s, for a typical CO and ONe nova, respectively (see Gómez-Gomar et al. (1998); Hernanz et al. (1999)).

Width of the lines fully taken into account

Future missions: GRI (γray lens), ACT (Advanced Compton Telescope)

#### Need of more sensitive intruments

#### Future planned missions

> GRI (Gamma-Ray Imager based on a Laue focusing  $\gamma$ -ray lens) ----> see talk by Wunderer

ACT (Advanced Compton Telescope) see talk by Boggs

# Why focusing $\gamma$ -rays?



#### from Peter von Ballmoos, CESR, Toulouse

9 May 2007 KITP – Accretion and Explosion: The Astrophysics of Degenerate Stars M. Hernanz

# PART II: see talk on Friday 11

9 May 2007 KITP – Accretion and Explosion: The Astrophysics of Degenerate Stars M. Hernanz