Echoes of Ancient Supernovae in the Large Magellanic Cloud

Tom Matheson Armin Rest and the SuperMACHO Team

Why should you care about echoes?

- •Light scattered by dust ("echoes") have been observed from a few recent supernovae: 1986G, 1987A, 1991T, ...
- Probes the spatial 3-D structure of the dust
- •SN light echoes should in principle be visible hundreds to thousands of years after explosion
- Light echoes from ancient supernovae could allow us to observe the same light seen by Tycho and Kepler
- By taking spectra of light echoes, we may type ancient supernovae directly
- •Light echoes offer the only opportunity to study both the initial explosions and remnants in the *same* supernovae

The SuperMACHO project: A next generation microlensing survey

NOAO/CTIO: A. Rest, G. Damke (PIA), C. Smith, N. B. Suntzeff, K. Olsen

Harvard: C. Stubbs , A. Garg, P. Challis UW: A. Becker, G. Miknaitis, A. Miceli

LLNL: K. Cook, S. Nikolaev, M. Huber

McMaster U.: D. Welch

U. Católica: F. Clocchiati, D. Minniti, L. Morelli

Washington U.: A. Newman (REU)

Ohio State U.: J.L. Prieto

Also: T. Matheson (NOAO), M. Bergmann (Gemini)

Primary science goal: How much do "MACHOs" contribute to the Galactic dark matter halo?

SuperMACHO Survey: Microlensing Survey towards the LMC

More events

- □ CTIO 4m
- Mosaic Imager: big FOV
- □ 150 half nights over 5 years
- ☐ Blocks of 3 months per year
- □ One Filter: "VR"

Spatial Coverage

- □ 68 fields, 23 deg²
- Difference Imaging

"False" alerts

The Light Echoes of SN 1987A

The Light Echoes of SN 1987A

The Light Echoes of SN 1987A

Geometry of Light Echoes

Ellipsoids trace out surfaces of constant arrival time

Illustration by David Malin, AAO http://www.aao.gov.au/images/image/light_echo_3.gif

The Geometry of the SN 1987A Light Echoes

Light Echo Surface Brightness

Simpler parameterization, with assumptions:

$$\Sigma_{2} = \Sigma_{1} + (V_{SN,2} - V_{SN,1})$$

$$-2.5 \log_{10}[r_{1}t_{1}/(r_{2}t_{2})]$$

$$-2.5 \log_{10}(\Phi_{2}/\Phi_{1})$$

Sugerman (2003), Xu et al. (1994)

Extracting Light Echoes with NN2: Zero-flux correction (Newman & Rest, PASP, 2006)

Single-template difference image

NN2 image, combined and smoothed

- Combine each year
- Smooth with 3x3 kernel
- http://www.ctio.noao.edu/~supermacho/lightechos/

SN 87A Light Echoes with NN2 Difference Imaging (each season combined and smoothed)

Newman & SuperMACHO collaboration, in preparation

Light Echoes from a source other than SN 1987A?

Light Echoes from Ancient Supernovae in the LMC

- Three distinct light echo groups
- Apparent proper motion:
 between 0.7c and 1.8c
- R magnitudes between 22.5 and 24.0

For Type Ia SN, assuming dust sheet at z=150 pc, same dust density as sheets close to 87A

At 500 yr, $\Sigma_V = 22.5$ mag arcsec⁻², $\rho = 0.29$ deg (250 pc)

At 1000 yr, $\Sigma_{V} = 24 \text{ mag arcsec}^{-2}$, $\rho = 0.5 \text{ deg (420 pc)}$

Rest et. al., 2005, Nature, 438, 1132

SNRs Associated with the Light Echoes: Ages

TABLE 1
THE SMALLEST SUPERNOVA REMNANTS
IN THE LARGE MAGELLANIC CLOUD

SNR Name	Age or Radius	SN Type	
SN 1987A	8 yr	II	
$0540 - 69.3 \dots$	1.5 pc	H	
N157B	1.8 pc	(II)	?
N103B	3.0 pc	Ia	LE3
0509 – 67.5	3.3 pc	Ia	LE ₂
0519 – 69.0	3.6 pc	Ia	LE1

Rest et. al., 2005, Nature, 438, 1132

Echo	SNR	Age(yrs)
SN 87A		15.9 ± 1.4
LE1	0519-690	600 ± 200
LE2	0509-675	400 ± 120
LE3	0509-687	(860)

CAVEAT: Assumes perpendicular dust sheet

Hughes et. al. (1995)

Light Echoes from a source other than SN 1987A?

- Gemini-S GMOS
- Nod&Shuffle
 Mode
- Light Echo group LE2 (SNR 0509-67.5)
- SN 1998es (Ia) template fitted (integrated, scattered)

Smoothed observed spectrum (blue)

Nugent Ibc template (red)

Nugent IIp template (red)

Spectra of all three light echoes

Conclusions

- •Light echoes from supernovae are visible hundreds of years after explosion
- Light echoes by themselves allow exploration of three-dimensional structure of dust in nearby galaxies
 - Light echoes of SN 87A in unprecedented detail and depth
 - Extended dust sheet 1 kpc in front of SN 87A
- •With spectra of light echoes, we can establish Type Ia/Type II SN rates over baselines of hundreds of years in individual galaxies
- •Light echoes offer the *only* opportunity to study both the initial explosion *and* its after-effects in the same objects

Future: Historic Galactic Supernovae

SN name	Explosion date	Type
Cas A	1680 AD?	SN Ib?
Kepler	1604 AD	SN Ia or Ib?
Tycho	1572 AD	SN Ia
SN 1181	1181 AD	?
SN 1006/Lupus	1006 AD	SN Ia
Crab Nebula	1054 AD	SN II
RCW 86	0185 AD	SN II?

Example Galactic SN: Tycho

- $V_{max} = -6.5$, distance 3100 pc
- Dust sheet 400 pc in front of Tycho:
 - Surface brightness about V=22.0
 - Arcs about 6.5 deg away from SNR
 - Apparent proper motion: 30"/yr
 - Light echo width 30"