Gamma-ray Bursts from the Birth of Magnetars

Eliot Quataert (UC Berkeley)

Collaborators

Niccolo Bucciantini Brian Metzger Todd Thompson Jon Arons Phil Chang

Overview

- Diversity of Young Neutron Stars: Ω & B?
- Outflows from Magnetized, Rotating Proto-NSs
 - What sets \dot{M} , \dot{E} , Γ in the first ~ 10 sec?
- A "Magnetar in a Bottle": interaction w/ the host star
 - What is the origin of the observed collimation of GRBs?
 - Emphasize Central Engine Physics, not GRB Phenomenology
 - Goal: $E \sim 10^{51-52}$ ergs in collimated $\Gamma \sim 1-10^3$ material in ~ 30 s (+ a SN!)

The Diversity of Neutron Stars

X-ray

Thermal Emission

Rotation-Powered Pulsars

Crab (P = 33 ms; B = $4x10^{12}$ G)

Chandra (X-ray)

'Typical' pulsars have B ~ 10^{11} - 10^{13} G P ~ 30 ms - 1 s

Dec '04 Flare From Sgr 1806-20

Magnetars

Strong B Fields ~ 10¹⁴-10¹⁵ G inferred for some NSs

spindown
flares
quiescent flux
~10 % of NSs

Origin of NS Diversity (B, Ω)

- Presumably tied to diversity in progenitors, SN explosions
- Magnetars predicted by Thompson & Duncan: NS magnetic fields generated/modified by dynamo during the birth of the NS (Duncan & Thompson 1992)

- Slow rotation (P >> τ_{conv} ~ ms)
 B_{Dipole} ~ 10¹² G
- Rapid rotation (P ~ τ_{conv} ~ ms)
 B_{Dipole} ~ 10¹⁵ G
 - Current Magnetars: P ~ 5-10 sec
 Spindown in ~ 10⁴ yrs (or less)

Planetary Dynamo Sims

Progenitor Collapses Bounce & Shock **Formation Explosion (?)** (~ 1 sec) KH contraction (~ 1-10 sec)

Burrows

Rotationally-Driven SN

Burrows et al. 2007 (uniform strong seed field ala Leblanc & Wilson 1970)

 $E_{\rm rot} \approx 2 \times 10^{52} P_{\rm ms}^{-2} \,{\rm ergs}$

Thompson, Quataert, & Burrows 2005

Early Spindown of Magnetars

• Vacuum Dipole (pulsars): $\dot{E} \sim 10^{49} P_{\rm ms}^{-4} B_{15}^2 \,{\rm ergs\,s}^{-1}$

SpindownTime : $\tau_E \equiv \frac{E_{\rm rot}}{\dot{E}} \sim 1 P_{\rm ms}^2 B_{15}^{-2} \,{\rm hrs}$

- Suggested as possible central engine for GRBs (e.g., Usov 1992; Thompson 1994)
- During Kelvin-Helmholtz cooling phase of a young NS (first ~ 10 sec), strong mass loss from neutrino driven wind modifies spindown & sets how relativistic the outflow is (not a vacuum problem!)

GR Aligned Dipole Stellar Spindown Sims

Strong B-field forces matter to corotate (extracts much more angular momentum)

Corotation lasts until the Alfven Point $\equiv R_A$

$$R_A: \quad \frac{B_r^2}{8\pi} = \frac{1}{2}\rho v_r^2$$

 $\dot{J}=-\dot{M}R_{A}^{2}\Omega\gg-\dot{M}R_{NS}^{2}\Omega$

Light Cylinder $R_A < R_L = c/\Omega \sim 68 \text{ km} (P \sim \text{ms})$

Equatorial Wind Solutions

1D neutrino-heated MHD winds (non-rel) w/v-microphysics Given B, Ω , L_v Solve for É, M, J Strong dependence on Ω because of centrifugal flinging (cent. expansion of NS atmosphere)

Metzger et al. 2007

$B = 3 \ 10^{14} G$

As PNS cools, outflow evolves from NR to Rel with $\sigma > 1$

 $\sigma \propto \frac{B^2}{\dot{M}}$

Enhanced Early Spindown

NR Wind : $\tau_E \propto \dot{M}^{-1/3}$

Enhanced Early Spindown

NR Wind : $\tau_E \propto \dot{M}^{-1/3}$

R_Y: Last Closed Field Line

Enhanced Early Spindown

NR Wind : $\tau_E \propto \dot{M}^{-1/3}$ **Ry: Last Closed Field Line** Vacuum Dipole **R**_Y = **R**_L (Light Cylinder) Sims **More Open Field Lines** $R_{Y} \sim 0.3-0.5 R_{L}$ for $\sigma \sim 0.1-20$ ⇒ ~ 10 x Faster Spindown (even when Rel, at least for modest σ)

$$\dot{E} \propto B^2 P^{-4} \left(\frac{R_L}{R_Y}\right)^2$$

Collimated Outflows from GRBs

- $E_{iso} \sim 10^{53-54}$ ergs gamma-rays
- Early afterglow observations provided evidence for "jet breaks" indicative of beaming (e.g., Frail et al. 2001)

Swift X-ray Afterglows: Where are the X-ray Jet Breaks?

D. N. BURROWS AND J. RACUSIN

Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 USA

 Late-time radio observations probe total energy in latetime Sedov-Taylor phase: E ~ 10⁵¹⁻⁵² ergs: Collimated (e.g., Berger et al. 2004)

Ideal Relativistic Winds do not Efficiently Self-Collimate

Rel. Winds

Little Collimation Energy Flux Primarily Equatorial

Bipolar Morphology of the Crab on Large & Small Scales

ESO PR Photo 40f/99 (17 November 1999)

© European Southern Observatory

A Magnetar in a Bottle

Magnetar Inflates a Bubble of Rel. Plasma

and Magnetic Field Behind the Outgoing SN

Shock; Nebula reaches Magneto-Hydro Equil.

v << c

SN Shock

A Magnetar in a Bottle

Magnetar Inflates a Bubble of Rel. Plasma and Magnetic Field Behind the Outgoing SN Shock; Nebula reaches Magneto-Hydro Equil.

stronger $B \Rightarrow H \downarrow \Rightarrow$ Higher Pressure on Axis

 $\dot{E}_{tot}(t)$ from evolutionary calcs

35 M_{sun} progenitor

 $\frac{\dot{E}_{mag}}{\dot{E}_{tot}} = 0.1$

 $\dot{E}_{tot}(t)$ from evolutionary calcs

35 M_{sun} progenitor

 $\dot{E}_{tot}(t)$ from evolutionary calcs

35 M_{sun} progenitor

 $\dot{E}_{tot}(t)$ from evolutionary calcs

35 M_{sun} progenitor

Bucciantini, Quataert, et al.

Summary

- Rapid rotation ~ ms and strong magnetic fields ~ 10¹⁵ G plausibly implicated in the birth of some neutron stars
- Spindown of ms magnetars modified by v-driven wind
 - spindown on ~ 30 sec; ~ 10-30 x more efficient than vacuum dipole
 - can power "hypernovae" (~ 10⁵² erg SN) and perhaps GRBs
 - predicts lower power, longer duration 'engines' than currently detected
- "Magnetar in a Star": collimation via 'confinement' by host star
 - requires the wind to be moderately magnetized at large r
 - ★ outflow contains significant free neutrons for P < 0.8 ms (unlikely to be GRBs)
 ★ r-process nucleosynthesis significantly altered in high Ω/B PNS winds