Introd	

GCD Model and Simulations

Initiation of Detonation

Gradient Mechanism Initiation of Detonations ... in the context of the GCD model

Ivo Rolf Seitenzahl

The University of Chicago

March 29, 2007

- **2** GCD Model and Simulations
 - 3-D Simulations
 - 2-D Simulations
- Initiation of Detonation
 - Zel'dovich gradient mechanism
 - Laboratory setup
 - Spacetime Diagrams
 - Results

④ Final Thoughts

- Summary
- Outlook
- Acknowledgements

Introduction ●0	GCD Model and Simulations	Initiation of Detonation	Final Thou 000
Who am I?			

Basics

At the ECT* in Trento 2004

- Born and raised in Germany
- 1998-2002 University of Arizona B.S. Astronomy/Math/Physics
- 2002-2007 University of Chicago Physics Ph.D. candidate Advisor Jim Truran
- Generously supported by JINA, but also much interaction and support from the FLASH Center

(日)、

Introduction	GCD Model and Simulations	Initiation of Detonation	Final Though
00			
M/I 12			

Past and Present Research Interests

- Comparative photometry observations of sdB stars in binaries for eclipses, reflection effects etc.
 - Discovered new class of long period g mode pulsators (class PG 1716+426)
- Interest in r-process nucleosynthesis
- NSE calculations for Type Ia Supernova flame models
- Neutronization in Type la Supernovae
- Initiation and structure of detonations

Introduction 00	GCD Model and Simulations	Initiation of Detonation	Final Thoughts 000
3-D Simulations			
GCD movie			

The movie goes here. Download it here: http://flash.uchicago.edu/j̃bgallag/6KM_MOVIES/6km_18rb_42off/temp/

Introduction	GCD Model and Simulations	Initiation of Detonation	Final Thoughts
	0000		

2-D Simulations

Rising Bubble, Breakout and Gravitationally Confined Flow

GCD Model and Simulations

Initiation of Detonation

Final Thoughts 000

2-D Simulations

Zoom of South Pole Region

GCD Model and Simulations

Initiation of Detonation

Final Thoughts 000

J I N A

2-D Simulations

Detonation Sweeping across WD

ロトメポトメモトメモト・モ

Introduction 00	GCD Model and Simulations ○○○○●	Initiation of Detonation	Final Thoughts 000
2-D Simulations			
Neutroniz	ation		

(オロト オピト オヨト オヨト 三日

Introduction	GCD Model and Simulations	Initiation of Detonation	Final Thoughts
		0000000000	
Zel'dovich gradient mechan	ism		

Zel'dovich et al. (1970,1988,1990) and Lee et al. (1978) suggested that induction time gradients may be responsible for a wide range of detonation initiations. The induction time gradient leads to a spatial time sequence of energy release, leading to a compression wave which subsequently steepens into a shock. This is also known as the SWACER (Shock Wave Amplification by Coherent Energy Release) mechanism.

Aforementioned 3D and 2D simulations don't resolve relevant scales of initiation of detonation.

GCD Model and Simulations

Initiation of Detonation

Final Thoughts

Laboratory setup

Initiation of a detonation from a hot spot

Temperature profile used

- FLASH3 solves reactive Euler equations (fully compressible, PPM)
- 64 blocks with 16 zones and 7 levels of AMR, blocksize = R
- 13 Species Network
- 1-D Spherical Geometry
- Systematically determined smallest radius for which detonation initiates by bisection
- \bullet Varied composition, T_m and T_0

(日)、

э

0.14

80

40 Rodius (km)

20

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Rodius (km)

80

0.13

Rodius (km)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Rodius (km)

40 Rodius (km)

20

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / のへで

Rodius (km)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Introd	
00	

GCD Model and Simulations

Initiation of Detonation

Final Thoughts 000

Results

Table excerpt

Density	T_{max}	T_0	R _{crit} , min	R _{crit, max}	$\log(-m = \frac{T_0 - T_{max}}{R_{crit, max}})$
$[10^{6} \text{ g cm}^{-3}]$	[10 ⁹ K]	[10 ⁷ K]			orro,max
10.0	3.6	1.0	2.25km	2.30km	4.19
		40.0	1.5km	1.6km	4.30
		100.0	550m	600m	4.64
		150.0	180m	190m	5.04
	3.2	1.0	2.20km	2.25km	4.15
		40.0	1.5km	1.6km	4.24
		100.0	550m	600m	4.56
		150.0	180m	190m	4.95
	2.8	1.0	2.25km	2.3km	4.08
		40.0	1.5km	1.6km	4.18
		100.0	600m	650m	4.44
		150.0	180m	190m	4.84
	2.4	1.0	2.20km	2.25km	3.79
		40.0	1.4km	1.5km	4.13
		100.0	0.9km	1.0km	4.15
		150.0	550m	600m	4.18
	2.0	1.0	17km	18km	3.04
		40.0	14km	15km	3.03
		100.0	9.0km	10km	3.00
		150.0	4.0km	5.0km	3.00

Introd	

Results

GCD Model and Simulations

Initiation of Detonation

Final Thoughts 000

At low densities raising ambient background temperature T_0 has large effect on decreasing the critical radius. At high densities peak temperature T_m is dominant factor.

Density [g]	R _{NW}	R _{IRS}
$1.0 \cdot 10^{7}$	1.0 - 2.0 km	1.5 - 1.6 km
$3.0 \cdot 10^{7}$	25 - 50 m	38 - 40 m
$1.0 \cdot 10^{8}$	1 - 2 m	1.40 - 1.45 m

Code to code comparison with Niemeyer & Woosley 1997 positive.

・ロト ・聞ト ・モト ・モト

J I N A

æ

GCD Model and Simulations

Initiation of Detonation

Final Thoughts 000

Results

Critical Radii for 43% 16 O, 43% 12 C and 14% 4 He

$$\rho=10^6~{\rm g~cm^{-3}}$$

Adding ⁴He reduces peak temperature and density required to initiate a detonation.

⁴He present at surface of star would detonate earlier (more compact) leading to different nucleosynthetic yield.

э

(日)、

GCD Model and Simulations

Initiation of Detonation

Final Thoughts 000

Results

Critical Radii for 43% 16 O, 43% 12 C and 14% 4 He

$$\rho=10^7~{\rm g~cm^{-3}}$$

Adding ⁴He reduces peak temperature and density required to initiate a detonation.

⁴He present at surface of star would detonate earlier (more compact) leading to different nucleosynthetic yield.

э

(日)、

(日)、(四)、(E)、(E)、(E)

Summary

Let's recapture the most important points:

- Reproduced results of Niemeyer & Woosley (1997) and extended their work
- Found interesting regimes of constant temperature gradient and constant critical radius
- GCD model produces apparently more or less static gradient of induction timescales required for initiation of detonation

Introduction 00	GCD Model and Simulations	Initiation of Detonation	Final Thoughts ○●○
Outlook			
M/hat's no	xx+2		

- Extend range of table (in progress)
- Try to find theoretical explanation for constant radius regime
- Perform similar runs in cartesian coordinates to get feel for curvature effects
- Employ self consistent initial conditions for initiation of detonation study
 - Requires direct numerical simulations of feedback of nuclear burning on hydrodynamic flow
 - Try to run cold fuel into wall or up a steep density gradient

- 日本 - 4 日本 - 4 日本 - 日本

Introduction	

GCD Model and Simulations

Initiation of Detonation

Final Thoughts ○○●

Acknowledgements

You would not have seen this talk without ...

... the funding agencies:

This work is supported in part at the University of Chicago by the U.S. Department of Energy, under Grant B523820 to the ASCI Alliances Center for Astrophysical Flashes and in part by the NSF under Grant PHY 02-16783 for the Frontier Center Joint Institute for Nuclear Astrophysics JINA.

... my collaborators:

E. Brown, A. Calder, C. Graziani, G. Jordan, D. Lamb, C. Meakin,

B. Messer, F. Peng, D. Townsley, J. Truran, N. Vladimirova & more

... most importantly the organizers:

Lars Bildsten, Rosanne Di Stefano, Robert Kirshner, Craig Wheeler

