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Motivation

There have already been previous studies
of accreting WD stability (Fujimoto ‘82;
Paczynski ‘83; Nomoto et al. ‘06)

Stable accretion rate regime is factor of ~3
wide: why?
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There have already been previous studies
of accreting WD stability (Fujimoto ‘82;
Paczynski ‘83; Nomoto et al. ‘06)

Stable accretion rate regime is factor of ~3
wide: why?

Recent paper (Starrfield et al. ‘04) claims
much larger range of stable accretion rates

Hot WD? Full nuclear network?

Supersoft X-ray sources (van den Heuvel
et al. ‘92)

Type Ia supernovae:

— Likely progenitor system is white
dwarf (WD) accreting from
companion star until it reaches 1.4 M

— Need to burn accreted material stably;
otherwise material may be ejected due
to thermonuclear runaway in the
envelope (classical novae)

Shell burning (H, He, etc.) occurs in post-
main sequence stars
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Generic stability analysis

Assume steady-state (matter accreted and burned at the same rate)

Solve for steady-state conditions given parameters:

X, Z, M, M, Ly
Perturb entropy equation:
ds dT T dP
dt g ~ VB g
0L
oM

Stable if perturbation decays with time

T

— €
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Steady-state solutions

e In steady-state, time-derivatives are zero (d1/dt = dP/dt = 0), and burning
equals cooling with burning determined by the accretion rate:

_L—ng Y
€= 2 p L—-L,=MXE

e X is the hydrogen mass fraction; E is the energy per mass from H — He

e With a form for the energy generation rate, luminosity (rad. diff.), equation of
state (non-degenerate, include radiation pressure), and opacity (Thomson), we
can solve for the steady-state burning conditions

e Heat transport by radiative diffusion:

~ 47GMc aT* M Ly
N KT 3P MEdd LEdd

* Ratio of gas pressure to total pressure is 5= P,  / P. Increase importance of
radiation pressure by increasing accretion rate and core luminosity: Eddington
standard model.
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Steady-state solutions (cold CNO)
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Relating 0o and OP to oT

e To calculate perturbation timescale, need to relate density and
pressure perturbations to change in temperature

e Could do homologous expansion (e.g., Yoon et al. ‘04), but instead
we integrate hydrostatic equilibrium (HSE) to obtain M, , and keep it
fixed during perturbation

e Solving HSE yields upper bound on scale height:

P kgl
4h<Rbase h:_ B

pg  Bumpg

e In other words, #can’t go to zero; there is a sub-Eddington upper
limit to the accretion rate, above which no steady-state HSE solutions
exist. Essentially the standard RG L-M__ relationship (Paczynski
“70), modulo additional He-burning.

ore

1 Feb 2007 Shen KITP WD Conf



10-6

10-8

HSE constraint

— 1 1 I | | 1 I | | | I | | | I | | | |—

Je Dotted line: nuclear Eddington
1 limit
|s Solid line: HSE constraint

IR

lllllll
lIllllI

—1 | I | | | | | | | I | | | I | | | I—

06 08 1 12 1.4
M [Mg]

1 Feb 2007 Shen KITP WD Conf 9



2 channels for stability:
Thick shell case (higher Mdot)

e Negative gravothermal specific heat, c.:

Tos = ou Pélnp

0

=  C01

e Injection of heat causes an even larger amount of expansion work to
be done, so internal energy and T drop

e This is what stars as a whole do; they contract, radiate energy away,
and T increases: c.< 0 so they’re stable (the ultimate thick shell!)

e Independent of burning/cooling mechanism (aside from setting steady-
state solution)
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2 channels for stability:
Thlck shell case (hlgher Mdot)

] * Dotted: nuclear Eddington limit
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2 channels for stability:
Thin shell case (lower Mdot)

e Competition between heating and cooling
e To zeroth order, stable if T-dependence of heating is lower than 4
(Lo T%

e Also need to put in the effect of p and P perturbations, which help to
stabilize, especially if radiation pressure is high:

P = - —al
pum, 3
— Consider density change at constant pressure. If radiation
pressure dominated, small increase in 7" yields large decrease in p;

quenches burning even in extremely thin shell limit

— Inclusion of drop in P makes this even more dramatic
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Thermally stable Mdot’s (cold CNO)
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] ¢ Dotted: nuclear Eddington limit

] e Upper solid line: HSE constraint
| ¢ Bottom solid line: thin shell stability

e Dashed lines: numerical work (Nomoto et al.
2006)

e Factor of 3 between min and max Mdot’s

| | Why afactor of 3? Can calculate ratio of max
’ and min Mdot’s, assuming burning o. 7'° and
1078 B b b L T constant over accretion range (remember
M [M,] steady-state plot?), to get:
Mmax

3
Tl G

e Ratio not very dependent on 7 exponent: pre-factor ~3 for 7°-12
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So far, I’ve assumed negligible
core luminosity

Take limiting case of ultra-high
L.,..; then conditions in

envelope are set purely by this,
so it’s always stable

But can’t have arbitrarily high
L., for duration of accretion;
max possible is from steady
burning of He layer below
(dotted line), which doesn’t

open up much parameter space
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Hot CNO stabilization
LC(p,y) N, pH*O(B, )1 N(p,n OB, v)PN(p,)

If the layer is really hot/dense, proton captures occur faster than the 7-
independent f-decays. Rate-limiting steps are the two -decays, and H-

burning is stable (like on NSs).

So what do we have to do to get the f-
decays to matter? Increase g and decrease
Z:no (Which result in hotter/denser
conditions).

To test stability, same procedure as before:
solve for steady-state solutions; calculate 7-
and p-dependences of burning in equil.

(fun exercise in algebra and pre-calc!); see
if perturbation decays or grows.
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Thermally stable Mdot’s (full CNO)
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Thermally stable Mdot’s (full CNO)

Low masses, still burning via
cold CNO. Lower stable
Mdot’s because lower Z-yq
means higher 7 and weaker T-
dependence of cold CNO
burning. Ratio of min and
max Mdot’s still ~3.
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Thermally stable Mdot’s (full CNO)
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e Low masses, still burning via
cold CNO. Lower stable
Mdot’s because lower Z-yq
means higher 7 and weaker T-
dependence of cold CNO )
burning. Ratio of min and
max Mdot’s still ~3.

e For higher masses, hot CNO =
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thermally stable. BIG i Z2=107%
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Thermally stable Mdot’s (full CNO)

Low masses, still burning via
cold CNO. Lower stable
Mdot’s because lower Z-yq
means higher 7 and weaker T-
dependence of cold CNO
burning. Ratio of min and
max Mdot’s still ~3.

For higher masses, hot CNO
comes into play! S-decays are

thermally stable. BIG
effect...for 102 Z,

The lower Z 1s, the lower the
mass that hot CNO starts to
matter
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Conclusions

e Thermally stable accretion rate range on WDs is narrow:

Upper bound from HSE constraint

Thick shell stability for higher Mdot’s is due to negative gravothermal
specific heat

Thin shell stability for lower Mdot’s is due to competition between
heating and cooling (radiation pressure is important!)

Yields factor of ~3 in accretion rate range

e Core luminosity can stabilize, but need a LOT of it

e Hot CNO can stabilize, but need VERY low metallicity (or high
gravity)

e  Will post on astro-ph this afternoon

e Many thanks to Lars Bildsten and Tony Piro
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