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Ignition of Deflagration
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Convective Core

profile before flame ignition

Deflagration ignites in convective core of
WD. Convective velocities ∼ 100 km/s.
(Woosley, Wunsch, & Kuhlen, 2004, ApJ,
607, 921)

Highly turbulent: significant phase space
of fluctuations above average
temperature.

If ignition points are "rare" the first will
appear at the small scales within the first
temperature scale height of the center of
the star.

Must go out to 200 km for average tem-
perature to drop by 10% from initial value.
There is a good possibility that the first ig-
nition point can be well off-center.
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The Single Bubble Hypothesis
Start with treating an isolated region of burned material, a "single bubble".

Useful for learning about simple dynamics of bubble growth and rise, effects of
bouyancy on flame surface (both direct and indirect).

Start with a quiet background – this is not reality

Useful 2-d studies can be performed because there is a natural axis of symmetry.
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Do not have total freedom to place initial
ash bubble – due to limited resolution,
must place such that rbub < λc.

λc = critical wavelength above which
R-T causes flame front to become un-
stable. Above this size starting with a
spherical bubble is inconsistent.
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Evolution of Flame Bubble
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Shown: contours of progress
variable φ = 0.1, 0.5, and 0.9.

Stages of evolution:

1. Laminar evolution:
rbub . λc

2. Resolved R-T:
∆x < λc < rbub

3. Unresolved R-T:
λc < ∆x

Some clear dependences on
resolution: sharper features,
more localized flame front,
faster rise, different shed
vortex. Also general
similarities through the
resolved R-T phase.

Townsley - KITP 2007 – p.4/7



GCD: collision and compression

Color: T
Contours: ρ = 10

7 g/cc, φ = 0.1

Shown: t = 2.07, 2.19, 2.32 s
40 km initial radius

Townsley - KITP 2007 – p.5/7



Variation in Collision
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40 km case

Larger offsets lead to earlier collision, higher densities

Conservative ignition conditions, T > 2 × 10
9 with ρ > 10

7 g/cc, reached for many cases.

Most compression in jet directed toward stellar surface, not collision region
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Dependence on Initial Condition
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Outcome of deflagration phase deter-
mines density of material during detona-
tion phase. (True for multi-d study of any
Def-Det-type scenario.)

Larger offsets burn less material,
releasing less energy

Causes less expansion and more
dense material (shown is mass with
ρ > 5.5 × 10

7 g/cc.

More 56Ni should be be produced by
larger offsets

Timing of detonation ignition (×) also
significant
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