Carbon Detonation in Superbursts

Nevin Weinberg (UC Berkeley) Lars Bildsten (KITP)

Low-Mass X-ray Binaries (LMXBs)

Neutron star: $M \sim 1.3 - 2 M_{sun}$ Donor star: two possible types

- 1. ~0.5 M_{sun} main sequence star...H/He accretion OR
- 2. He white dwarf...He accretion

$$\dot{M} \sim 10^{-10} - 10^{-8} M_{\odot} \text{ yr}^{-1}$$

$$= 0.01 - 1 \dot{M}_{Edd}$$

$$L_{acc} = \frac{G M_{NS} \dot{M}}{R_{NS}}$$

$$\sim 10^{36} - 10^{38} \text{ ergs s}^{-1}$$

$$B << 10^9 G$$

What are superbursts?

- Superbursts are X-ray bursts that last for several hours.
- So far, superbursts seen in 8 LMXB systems.
- Likely due to unstable burning of a deep layer of ¹²C in neutron star ocean.
- ¹²C produced during H/He burning at much shallower depths (i.e., in normal X-ray bursts and/or stable H/He burning).
- After building up ¹²C layer for ~1 year (~1000 Type I bursts), T and ρ high enough at base that the ¹²C ignites.

Type I X-Ray Bursts

Late-time light curves (>1000 s):

- late-time light curve set by thermal cooling wave propagating through the hot ashes into the star
- assuming all the ¹²C fuel burns instantly and hydrostatically provides a good fit to late time light curve
- but...
 - not a good fit to early time light curve.
 - what triggers the precursor Type I burst?

Burning Questions

Given that:

- 1. The 12 C ignites at such high densities $(\rho \sim 10^9 \text{ g cm}^{-3} => \text{strong degeneracy})...$
- 2. And 12 C burning is so temperature sensitive ($\varepsilon \sim T^{26}$)...

Q: Will the burning become hydrodynamic?

Specifically, will the nuclear heating timescale

$$t_{heat} \sim (dlnT/dt)^{-1} \sim C_pT/\epsilon_{nuc}$$

during the burn become shorter than the dynamical time

$$t_{dyn} \sim h/c_s \sim 10^{-6}s$$
 ?

Yes

Timescales during burn

Timescales during burn

Minimum ignition depth needed to get hydrodynamic burn $t_{heat} < t_{dvn}$:

$$y_{ign} > (2.4 \times 10^{11} \text{g cm}^{-2}) \left(\frac{0.2}{X_{12}}\right)^{3.2} \left(\frac{Y_e}{0.5}\right)^{3.0} \left(\frac{2}{g_{14}}\right)^{0.7}$$

Equivalently, minimum energy release needed to get t_{heat} < t_{dvn}:

$$E > (3.4 \times 10^{41} \text{ergs}) \left(\frac{0.2}{X_{12}}\right)^{2.2} \left(\frac{Y_e}{0.5}\right)^{3.0} \left(\frac{2}{g_{14}}\right)^{0.7}$$

$$E_{\rm observed} = \int L dt \simeq 0.5 - 1.4 \times 10^{42} \rm ergs$$

Modeling the burn: I. the convective stage

- 1. Before ignition, entire atmosphere is radiative.
- 2. After ignition, a convective zone forms; it has an adiabatic temperature structure:

$$T(y) \sim y^n, n \sim 0.3$$

3. Convective zone grows as ε increases.

Modeling the burn: II. the detonation

- Solve propagation of detonation and shocks using a 1D finite difference, Lagrangian, hydro code.
- Couple the hydrodynamics to a 13 isotope α -reaction network: (includes α -chain, heavy-ion, and $(\alpha,p)(p,\gamma)$ reactions).

Modeling the burn: II. the detonation

- Detonation moves outward into lower density, colder fuel.
- At ~4x10¹¹ g cm⁻² detonation dies since t_{heat} > t_{dyn}
- But shock keeps moving out and steepening!

Modeling the burn: II. the detonation

- Shock steepens as power-law with column depth (∆p/p ~ y^{-9/16})
- deposits lots of entropy in H/He layer... by the time shock hits the H/He at $y=10^8$ g cm⁻², $\Delta p/p \sim 5-10$.
- H/He layer adiabatically expands in dynamical time (~μs) to cooler T.
- depending on how deep the H/He layer, shock can ignite the ⁴He... and trigger a Type I precursor burst.

Shock-triggered helium burning

- about 1/2 the time there is enough H/He around that the shock ignites the ⁴He and triggers a precursor burst
- precursors have been found in
 4 out of 4 cases in which the
 onset was observed... (uh oh?)

Light curve:
$$C_p \frac{\partial T}{\partial t} = \frac{\partial F}{\partial y} - \epsilon_{\nu}$$

Summary & questions

- strong degeneracy of ¹²C ignition layer
 t_{heat} < t_{dyn} => detonation.
- detonation drives a shock that steepens as it moves upward.
- shock hits H/He layer, triggering He burning 1/2 the time
- accounts for precursor burst (He burning) and pre-precursor burst (shock breakout).
- have seen precursor 4/4... should we worry?
- what would it look like if it was a deflagration instead of a detonation?
- what about 2D propagation effects? sliding detonation...

