The Phenomenology of Models with Warped Extra Dimensions and a Bulk Higgs.

Paul Archer archer@uni-mainz.de

In collaboration with Marcela Carena, Adrian Carmona & Matthias Neubert

> Snowmass on the Pacific 29th - 31st May

B b

Why study a Bulk Higgs?

- Offers concrete model for investigating the effect of changing the scaling dimension of the Higgs operator.
- Has appealing description of Fermion Mass Hierarchy (Agashe, Okui & Sundrum '08, PRA '12, v. Gersdorff, Quiros, Weichers '12)
- In Randall and Sundrum model, no 'bottom up' reason for Higgs to have special status as only brane localised field.
- Reduces electroweak (EW) and flavour constraints relative to brane localised Higgs.

• ...

Why study a Bulk Higgs?

- Offers concrete model for investigating the effect of changing the scaling dimension of the Higgs operator.
- Has appealing description of Fermion Mass Hierarchy (Agashe, Okui & Sundrum '08, PRA '12, v. Gersdorff, Quiros, Weichers '12)
- In Randall and Sundrum model, no 'bottom up' reason for Higgs to have special status as only brane localised field.
- Reduces electroweak (EW) and flavour constraints relative to brane localised Higgs.

• ...

EW constraints Vs. flavour constraints Vs. Higgs constraints

- BSM scenarios typically very constrained by EW precision tests (dominated by operators such as $|HDH|^2$ and $H^{\dagger}\sigma HA_{\mu\nu}B^{\mu\nu}$) and flavour constraints (dominated by $\bar{\psi}\psi\bar{\psi}\psi$).
- Higgs physics offers new constraints that bridges these largely independent constrains.

イロト イポト イヨト イヨト

The Model

In coming paper all expressions derived for a generic 5D geometry, but here focus on slice of $\mathsf{AdS}_5;$

$$ds^2=rac{R^2}{r^2}\left(\eta^{\mu
u}dx_\mu dx_
u-dr^2
ight)$$

with $R \leqslant r \leqslant R'$, $1/R' \equiv M_{\rm KK} \sim \mathcal{O}({\rm TeV})$ and $R'/R \equiv \Omega \sim 10^{15}$. Higgs described by

$$S = \int d^5 x \sqrt{G} \left[|D_M \Phi|^2 - V(\Phi) \right] + \int d^4 x \sqrt{g_{\rm IR}} \left[-V_{\rm IR}(\Phi) \right] + \int d^4 x \sqrt{g_{\rm UV}} \left[-V_{\rm UV}(\Phi) \right]$$

with

$$V(\Phi) = M_{\Phi}^2 |\Phi|^2$$
 $V_{\mathrm{IR}}(\Phi) = -M_{\mathrm{IR}} |\Phi|^2 + \lambda_{\mathrm{IR}} |\Phi|^4$ $V_{\mathrm{UV}}(\Phi) = M_{\mathrm{UV}} |\Phi|^2$

Higgs VEV

Higgs VEV is not constant but *r* dependant $\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ h(r) \end{pmatrix}$, with

$$h(r) = N_h \left(r^{2+\beta} + B_h r^{2-\beta} \right)$$

where

$$eta = \sqrt{4 + R^2 M_{\Phi}^2}$$
 and $B_h = -rac{2 + eta - RM_{
m UV}}{2 - eta - RM_{
m UV}} R^{2eta}$

Scaling dimension of Higgs operator is then 2 + β . Without fine tuning, Higgs VEV always peaked towards IR brane, still resolves Gauge Hierarchy problem. (Cacciapalia, Csaki, Marandella & Terring '06)

$H \rightarrow WW$ (and $H \rightarrow ZZ$)

Figure: $H \rightarrow WW$ for $M_{\rm KK} = 1.5$ TeV (blue), 4 TeV (red) and 10 TeV (green).

• When $m_H \ll M_{KK}$, one can show for 5D generic geometries that, at tree level,

$$\frac{\Gamma(H \to WW)}{\Gamma(H \to WW)^{\rm SM}} \leqslant 1.$$

• However results sensitive to how one fits to EW precision observables or equivalently where in the S - T ellipse you are sitting.

• In other words $H \rightarrow WW/ZZ$ should be included in EW χ^2 fits.

 $\begin{array}{c} \mathcal{G}^{(0)} \\ \Psi^{(n)} \\ \mathcal{G}^{(0)} \\ \mathcal{G}^{(0)} \\ \mathcal{G}^{(0)} \end{array} \\ \mathcal{G}^{(n)} \end{array} \\ \mathcal{G}^{(n)} \\ \Psi^{(n)} \\ \mathcal{G}^{(n)} \\$

 $\sigma(\mathcal{GG} \to H) \sim \sum_{U,D} \operatorname{Tr}\left(\mathbf{Y}_{U,D}\mathbf{M}_{U,D}^{-1}\right)$

 $\mathbf{Y}_{\mathbf{U}} = \frac{1}{\sqrt{2}} \begin{pmatrix} \tilde{Y}_{l}^{(0,0)} & 0 & \tilde{Y}_{l}^{(0,1)} & \dots & \tilde{Y}_{l}^{(0,1)} & \dots & \tilde{Y}_{l}^{(1,0)} & \\ \tilde{Y}_{l}^{(1,0)} & 0 & \tilde{Y}_{l}^{(1,1)} & \\ \tilde{Q}_{l}^{i} u_{R}^{j} & & Q_{l}^{i} u_{R}^{j} & \\ 0 & \tilde{Y}_{R}^{(1,1)*} & 0 & \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$

- LO contribution now a loop process, receives contributions from full tower of KK and fermions.
- Although KK fermions heavy, sizeable effect still found due to high multiplicity of modes, (different from pseudo-Goldstone Higgs scenarios).
- Full KK tower summed using completeness relations (Hirn & Sanz '07, Azatov, Toharia & Zhu '09)

where

Gluon-Gluon Fusion (Continued)

Figure: Yukawa couplings of the 1st, 2nd and 3rd KK modes in the mass eigenstate basis. Here consider simplified 1 generation model with $c_Q = 0.61$ and $c_U = -0.56$ and 5D Yukawa $Y_U = \sqrt{R}$. The lighter of the mass eigenstates are the dashed lines.

- With the exception of the zero mode, fermions in 5D are vector-like, i.e two mass eigenstates.
- When the Higgs is on the brane ($\beta \rightarrow \infty$), gluon-gluon fusion can be enhanced or suppressed, relative to SM result, depending on which limits you take first. (Azatov, Frank, Pourtolami, Toharia & Zhu '09 '13, Carena, Casagrande, Goertz, Haisch, Neubert, Pfof '10, '12 Malm, Neubert, Novotny & Schmell '13)
- With the Higgs in the bulk (for the model considered), the result is unambiguous, one finds an enhancement.

Gluon-Gluon Fusion and Flavour Constraints

For Fermions with a bulk mass parameter $c_{\chi}R$ and a 5D Yukawa Y_{χ} , the effective zero mode Yukawa is

$$Y^{(0,0)}_{\psi_L^i\chi_R^j} \approx \frac{Y_\chi \tilde{\nu}}{\sqrt{R}} \sqrt{\frac{(1+\beta)(1-2c_\psi^i)(1+2c_\chi^j)}{(\Omega^{1-2c_\psi^i}-1)(\Omega^{1+2c_\chi^j}-1)}} \frac{\Omega^{1-c_\psi^i+c_\chi^j}-\Omega^{-1-\beta}}{2+\beta-c_\psi^i+c_\chi^j} \propto \frac{Y_\chi}{\sqrt{1+\beta}}$$

- Hence for large values of β, a larger 5D Yukawa is required in order to maintain correct quark masses.
- The size of the enhancement in Gluon-Gluon fusion is linearly sensitive to the 5D Yukawa, $Y_{\chi}\sqrt{1+\beta}$.
- Allowed size of 5D Yukawa couplings very important to stringent constraints from flavour physics, in particular ε_K.
- For a brane Higgs, NDA was used to estimate that $|Y_{\chi}|/\sqrt{R} \lesssim$ 3, forcing $M_{\rm KK} \gtrsim 10-15$ TeV. (Csaki, Falkowski & Weiler '08).
- If one allows $|Y_{\chi}|/\sqrt{R} \lesssim 12$, stringent flavour constraints greatly reduced. (Bauer, Casagrande, Haisch & Neubert '09)

The allowed size of the 5D Yukawa couplings, of relevance to flavour constraints, now constrained not by perturbativity of the theory, but by Higgs physics.

Figure: A NDA estimate of the size of the 5D Yukawa coupling at which one looses perturbative control of the theory, in units of \sqrt{R} . Asymptotes to 3 as $\beta \rightarrow \infty$.

イロト イポト イヨト イヨト

Gluon-Gluon Fusion Results

Figure: $|Y_{\chi}|/\sqrt{R} \leq 6$

Figure: $|Y_{\chi}|/\sqrt{R} \leq 6\sqrt{1+\beta}$

Gluon-Gluon fusion for $M_{\rm KK} = 1.5$ TeV (blue), 4 TeV (red) & 10 TeV (green). All points give correct quark masses and mixing angles.

- Again LO contribution is a loop process, receives contributions from charged scalars, vectors and fermions in model.
- Bulk Higgs models have extended scalar sector, arising from the mixing between 5th components of W and charged Higgs.
- Additional charged scalars quite heavy

$$m_n^{(\phi^{\pm})} \sim \left(rac{4n+1+2eta}{4}
ight) rac{\pi}{R'}$$

Logarithmically divergent diagrams such as

do not occur, due to gauge invariance forbidding the $\gamma - W - \phi$ vertex. $Z - W - \phi$ vertex is allowed. In practice, deviation from SM result is dominated by same fermion loop that contributes to gluon gluon fusion.

I.e an enhancement in gluon-gluon fusions gives a corresponding suppression in $H \rightarrow \gamma \gamma$.

Figure: $M_{\rm KK} = 1.5, 4, 10$ TeV, $|Y_{\chi}|/\sqrt{R}\sqrt{1+\beta} \leqslant 3$

Comparison with Experiment

Figure: $M_{\rm KK} = 4 \text{ TeV}, |Y_{\chi}|/\sqrt{R}\sqrt{1+\beta} \leqslant 3, 6, 10$ Figure: $M_{\rm KK} = 4 \text{ TeV}, |Y_{\chi}|/\sqrt{R}\sqrt{1+\beta} \leqslant 3, 6, 10$

 $\begin{array}{l} \mbox{Figure:} \ M_{\rm KK} = 1.5, \ 4, \ 10 \ {\rm TeV}, \ |Y_{\chi}|/\sqrt{R}\sqrt{1+\beta} \leqslant 3 \quad \mbox{Figure:} \ M_{\rm KK} = 1.5, \ 4, \ \underline{40} \ {\rm TeV}_{\overline{\kappa}} \ |Y_{\chi}|/\sqrt{R}\sqrt{1+\beta} \leqslant 3 \end{array} \end{array}$

- Many possible BSM scenarios, for EW symmetry breaking, the question is how to distinguish between them.
- Even with low precision, Higgs physics offers constraints on BSM scenarios that compliment those coming from flavour and EW physics.
- A bulk Higgs offers a convenient toy model for investigating the effect of changing the scaling dimension of the Higgs, or equivalently a model of a partially composite Higgs.
- There are testable differences between different composite Higgs scenarios, e.g. sizeable modifications to $GG \rightarrow H$ in RS scenarios but typically not in pseudo-Goldstone Higgs models.

What about the future?

- Measurement of Higgs self coupling important in distinguishing between scenarios where the Higgs potential is generated at 1 loop (e.g. pseudo-Goldstone Higgs) and scenarios with fundamental potentials (e.g. this scenario).
- $H \rightarrow Z\gamma$ is both difficult to measure and also difficult to calculate but, unlike $H \rightarrow \gamma\gamma$, charged scalar contribution not 'protected' by gauge invariance.

イロト イポト イヨト イヨト