A New Probe of Naturalness

Snowmass on the Pacific Santa Barbara May 29th 2013

N. Craig, C. Englert, M. M. 1305.5251

Matthew McCullough Simons Postdoctoral Fellow, MIT

See also: Farina, Perelstein, and Rey-Le Lorier

What is Naturalness?

• No quadratic divergences:

$$h - - - h \neq \Lambda^2$$

• LHC: SUSY/Stop/KK/t' searches...

- Explore naturalness generally?
 - Must we commit to specific UV-completions?

Generalizing Naturalness

Staring at this:

• Scalars:

$$\mathcal{L}_{\mathrm{Nat}} = \sum_i \left(|\partial_\mu \phi_i|^2 - m_i^2 |\phi_i|^2 - \lambda_i |H|^2 |\phi_i|^2 \right)$$
 • Coupling is fixed:
$$\sum_i \lambda_i = 6\lambda_t^2$$

An effective theory of naturalness!

• Staring at this:

$$\delta m_h^2 = h - - - h$$

Staring at this:

$$\delta Z_h = h - - - h$$

• Staring at this:

$$\delta Z_h = h - - \left(? \right) - - h$$

• Is it physical?

$$\mathcal{L}_{eff} = \frac{c_H}{m_\phi^2} \left(\frac{1}{2} \partial_\mu |H|^2 \partial^\mu |H|^2 \right) + \dots$$

• Staring at this:

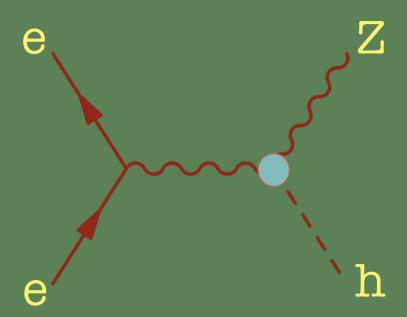
$$\delta Z_h = h - - - - h$$

• Is it physical?

$$\mathcal{L} \supset \left(1 + 2v^2 \frac{c_h}{m_\phi^2}\right) \frac{1}{2} \partial_\mu h \partial^\mu h$$
$$+ m_W^2 W^+ W^- + \frac{\sqrt{2}}{v} m_W^2 h W^+ W^-$$

• Staring at this:

$$\delta Z_h = h - - - - h$$


• Is it physical?

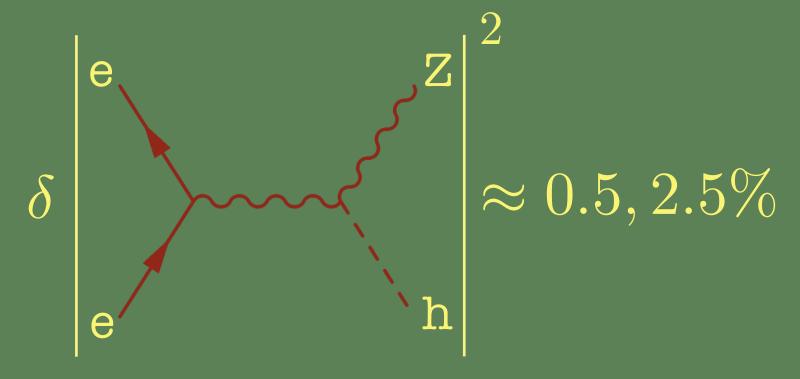
$$\mathcal{L}_{eff} = \frac{c_H}{m_\phi^2} \left(\frac{1}{2} \partial_\mu |H|^2 \partial^\mu |H|^2 \right) + \dots$$

• Yes!
$$\delta c_{hVV} = \delta c_{h\overline{f}f} = c_H v^2/m_\phi^2$$

• But... naturalness: $m_{\phi} \sim v$

• Need the full calculation, e.g.

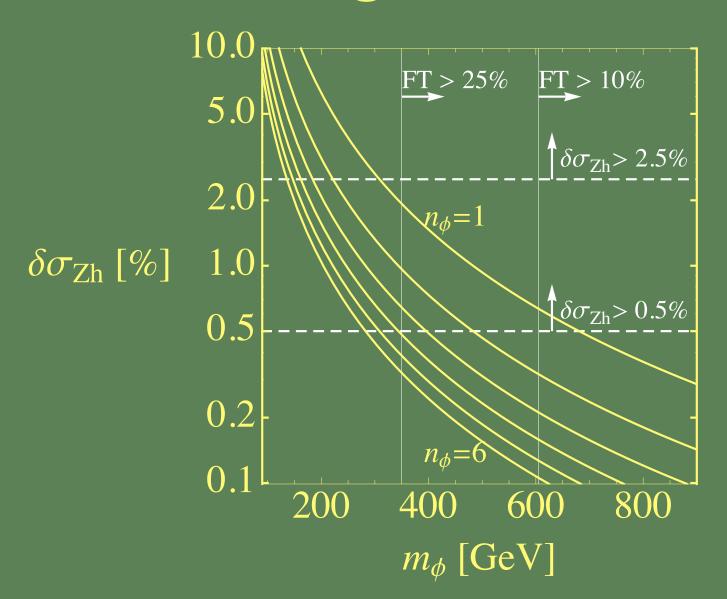
• Correction enters via counter-terms.

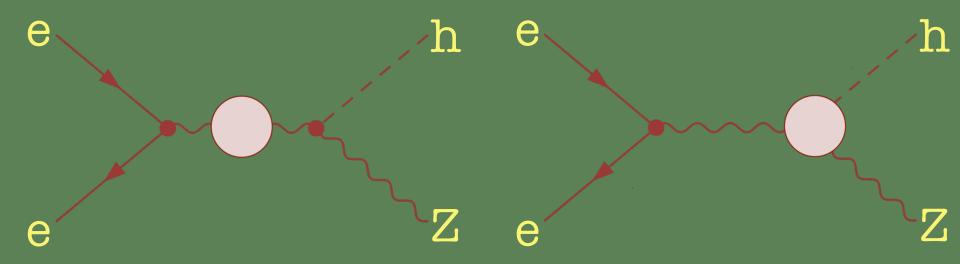

• If you happen to care...

$$\delta c_{hVV} = \frac{9\lambda_t^2 m_t^2}{4\pi^2 n_{\phi} m_h^2} \left(1 + F\left(\frac{m_h^2}{4m_{\phi}^2}\right) \right)$$

• Where:

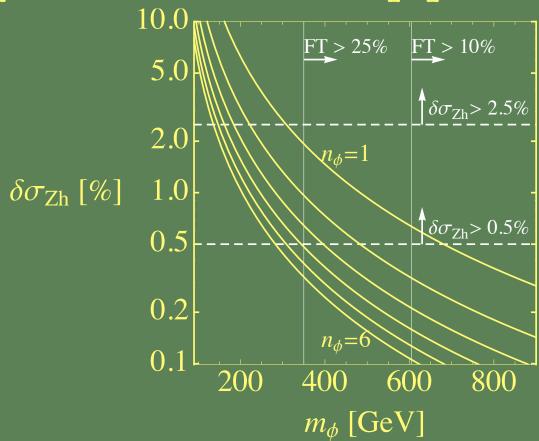
$$F(\tau) = \frac{1}{4\sqrt{\tau(\tau - 1)}} \log \left(\frac{1 - 2\tau - 2\sqrt{\tau(\tau - 1)}}{1 - 2\tau + 2\sqrt{\tau(\tau - 1)}} \right)$$


LC offers extraordinary precision!


• Never say never for LHC too...

• Can a LC probe naturalness?

Yes.



What if top-partners have EW charges?

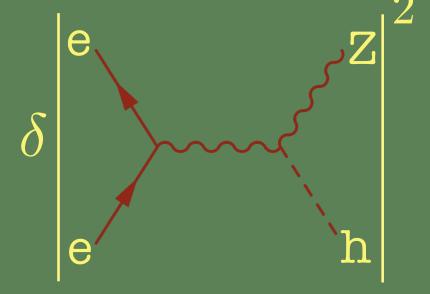
- Result still dominated by WF correction!
 - C. Englert and M. M. $(\lambda_t^2 \gg g^2, g'^2)$

• Applies to all scalar top-partners:

Regardless of gauge charges!

Conclusions

- Known Natural Theories:
 - SUSY, Composite, Technicolor, UEDs, RS,...
- Under major tension from LHC!


- But weak scale may still be natural
 - Flipped SUSY, Twin Higgs,.. who knows!

• If, so what are generic predictions?

Conclusions

• Goal: Distill Higgs physics from naturalness and test it!

• Linear Collider:

enables exploration of naturalness principle, independent of specific models!