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Likelihoods: why should theorists care?
1 Gives full info on how consistent a given model is with data

(not IN/OUT)→ allows global fits
2 Allows proper recasting of experimental results to different

models
3 Allows uncertainties on mt , ΣπN , detector efficiency, etc to

be accounted for + propagated consistently

Likelihoods for beyond-the-SM searches to be described:
CMB angular power spectrum distortions:

Energy injection from DM annihilation χχ→ SM at z ∼ 600
Neutrino signals from the centre of the Sun:

Solar WIMP capture and annihilation

Models:
CMSSM: m0, m 1

2
, A0, tan β, µ

MSSM-25: M1, M2, M3, 15×mf̃ , At , Ab, Aτ , Ae/µ, mA,
tan β, µ
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Generalised DM CMB likelihood functions

Simple CMB likelihood function, for
Any combination of annihilation or decay channels
Any dark matter mass
Any decay lifetime/annihilation cross-section

→ just requires interpolating one number in a table.

feff for annihilation:

ln L(〈σv〉|mχ, ri ) = −1
2

f 2
eff(mχ, ri )λ1c2

1

(
〈σv〉

2× 10−27cm3s−1

)2 (GeV
mχ

)2

(1)

η for decay:

ln L(τ |mχ, ri ) = −1
2

(
δΩ

ΩDMτ

)2

η2(τ,mχ, ri ) (2)
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How to find DM with neutrino telescopes

The short version:

1 Halo WIMPs crash into the Sun
2 Some lose enough energy in the scatter to

be gravitationally bound
3 Scatter some more, sink to the core
4 Annihilate with each other, producing

neutrinos
5 Propagate+oscillate their way to the Earth,

convert into muons in ice/water
6 Look for Čerenkov radiation from the

muons in IceCube, ANTARES, etc

Pat Scott – May 31 – Snowmass on the Pacific, KITP Neutrino telescopes, the CMB & the MSSM
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6 Look for Čerenkov radiation from the
muons in IceCube, ANTARES, etc

Pat Scott – May 31 – Snowmass on the Pacific, KITP Neutrino telescopes, the CMB & the MSSM



university-logo

CMB likelihood
Neutrino telescope likelihood

MSSM projections

How to find DM with neutrino telescopes

The short version:
1 Halo WIMPs crash into the Sun
2 Some lose enough energy in the scatter to

be gravitationally bound
3 Scatter some more, sink to the core
4 Annihilate with each other, producing

neutrinos

5 Propagate+oscillate their way to the Earth,
convert into muons in ice/water
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Advanced IceCube Likelihood for Model Testing

Simplest way to do anything is to first make it a counting
problem. . .

Compare observed number of events n and predicted number θ
for each model, taking into account error σε on acceptance:

Lnum(n|θBG +θsig) =
1

√
2πσε

∫ ∞
0

(θBG + εθsig)ne−(θBG+εθsig)

n!

1
ε

exp

[
−

1
2

(
ln ε
σε

)2
]

dε .

(3)

Nuisance parameter ε takes into account systematic errors on
effective area, etc. σε ∼ 20% for IceCube.

Pat Scott – May 31 – Snowmass on the Pacific, KITP Neutrino telescopes, the CMB & the MSSM
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ε

exp
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−

1
2

(
ln ε
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)2
]
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(3)

Then: upgrade to full unbinned likelihood with number (Lnum),
spectral (Lspec) and angular (Lang) bits:

L = Lnum(n|θsignal+BG)
n∏

i=1

Lspec,i Lang,i (4)

All available in DarkSUSY v5.0.6 and later: www.darksusy.org
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CMSSM model reconstruction with IceCube event data

Benchmark recovery with 22-string IceCube WIMP-search
neutrino events + full likelihood:

Mock signal: 60 events, mχ = 500 GeV, 100% χχ→W +W−
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Prospects for detection in the MSSM-25

86-string IceCube vs Direct Detection (points pass Ωχh2, b → sγ, LEP)

Many models that IceCube-86 can see are not accessible to
direct detection. . .
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Prospects for detection in the MSSM-25

86-string IceCube vs Gamma Rays

Many models that IceCube-86 can see are not accessible by
other indirect probes. . .
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Prospects for detection in the MSSM-25

86-string IceCube vs LHC (very naively)
SMS limits: 7 TeV, 4.7 fb−1, jets + ET ,miss ; 0 leptons (ATLAS), razor + MT2 (CMS)

Many models that IceCube-86 can see are also not accessible
at colliders.
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Summary

Take-home messages:
1 Limits are not enough – experiments need to give full

likelihood information if phenomenology is to be done
properly

2 Neutrino telescopes provide the only access to many
MSSM-25 models

3 Energy information in neutrino DM searches can help
greatly in model discrimination
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Prospects for detection in the MSSM-25

Gaugino fractions

Mainly mixed models, a few Higgsinos
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