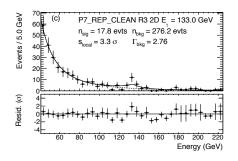
Collider searches for electroweak states suggested by the Fermi line

Brian Shuve


J. Liu, BS, N. Weiner, I. Yavin, arXiv:1303.4404

Perimeter Institute for Theoretical Physics IPP Fellow, McMaster University

Snowmass on the Pacific, KITP

May 31, 2013

- Fermi sees evidence for a gamma-ray line at 130-135 GeV in observations of the galactic centre (Bringmann et al.; Weniger; Tempel et al.; Finkbeiner and Su;...)
 - ► Most recent line analysis [arXiv:1305.5597]

- The origin of the excess is still unclear
- Assuming DM origin of the line, this implies $\sigma(\bar{\chi}\chi\to\gamma\gamma)v\sim 10^{-28}-10^{-27}~{\rm cm}^3/s$
 - ► What are the implications for physics at the weak scale?

• DM couples to photons at **loop level**, can try to parameterize in an effective theory

- DM couples to photons at loop level, can try to parameterize in an effective theory
 - ▶ In what follows, assume pseudo-Dirac DM singlet χ

$$\mathcal{L}_{\text{eff}} = \frac{\mu_{\chi}}{2} \,\bar{\chi}^* \sigma^{\mu\nu} B_{\mu\nu} \chi + \frac{1}{4\Lambda^3} \bar{\chi} \chi \left(c_1 B_{\mu\nu} B^{\mu\nu} + c_2 W^a_{\mu\nu} W^{a\mu\nu} \right) + \dots$$

• In a minimal model with no other operators in the EFT, relic abundance and Fermi line cross section can be obtained with $\mu_\chi^{-1}\sim \Lambda\sim \mathcal{O}(500~{\rm GeV})$

- DM couples to photons at loop level, can try to parameterize in an effective theory
 - ightharpoonup In what follows, assume pseudo-Dirac DM singlet χ

$$\mathcal{L}_{\text{eff}} = \frac{\mu_{\chi}}{2} \,\bar{\chi}^* \sigma^{\mu\nu} B_{\mu\nu} \chi + \frac{1}{4\Lambda^3} \bar{\chi} \chi \left(c_1 B_{\mu\nu} B^{\mu\nu} + c_2 W^a_{\mu\nu} W^{a\mu\nu} \right) + \dots$$

- In a minimal model with no other operators in the EFT, relic abundance and Fermi line cross section can be obtained with $\mu_\chi^{-1}\sim \Lambda\sim \mathcal{O}(500~{\rm GeV})$
- Because of loop factors, the relation to couplings and masses in a UV theory is actually

$$\mu_{\chi} \sim \frac{\lambda^2 g_{\rm EW}}{16\pi^2 M} \longrightarrow M \lesssim \mathcal{O}(100 \text{ GeV})$$

- DM couples to photons at loop level, can try to parameterize in an effective theory
 - \blacktriangleright In what follows, assume pseudo-Dirac DM singlet χ

$$\mathcal{L}_{\text{eff}} = \frac{\mu_{\chi}}{2} \,\bar{\chi}^* \sigma^{\mu\nu} B_{\mu\nu} \chi + \frac{1}{4\Lambda^3} \bar{\chi} \chi \left(c_1 B_{\mu\nu} B^{\mu\nu} + c_2 W^a_{\mu\nu} W^{a\mu\nu} \right) + \dots$$

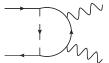
- In a minimal model with no other operators in the EFT, relic abundance and Fermi line cross section can be obtained with $\mu_\chi^{-1}\sim \Lambda\sim \mathcal{O}(500~{\rm GeV})$
- Because of loop factors, the relation to couplings and masses in a UV theory is actually

$$\mu_{\chi} \sim \frac{\lambda^2 g_{\rm EW}}{16\pi^2 M} \longrightarrow M \lesssim \mathcal{O}(100 \text{ GeV})$$

Gamma-ray lines with weak-scale cross sections naturally imply new charged states at the weak scale accessible at LHC

• To study the collider implications, we need to pick a UV completion

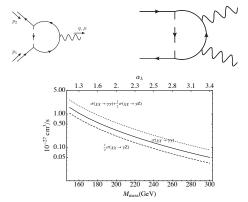
- To study the collider implications, we need to pick a UV completion
- • Choose theory with a Dirac fermion ψ and a complex scalar φ as messengers: (Weiner and Yavin, 2012)


$$\mathcal{L}_{\mathrm{UV}} = \lambda \, \bar{\psi} \chi \varphi$$

- To study the collider implications, we need to pick a UV completion
- • Choose theory with a Dirac fermion ψ and a complex scalar φ as messengers: (Weiner and Yavin, 2012)

$$\mathcal{L}_{\mathrm{UV}} = \lambda \, \bar{\psi} \chi \varphi$$

Generate magnetic dipole and Rayleigh operators at one loop



- To study the collider implications, we need to pick a UV completion
- • Choose theory with a Dirac fermion ψ and a complex scalar φ as messengers: (Weiner and Yavin, 2012)

$$\mathcal{L}_{\mathrm{UV}} = \lambda \, \bar{\psi} \chi \varphi$$

Generate magnetic dipole and Rayleigh operators at one loop

• We consider direct production of the charged states, so the phenomenology largely factorizes from the details of the dark sector interactions

- We consider direct production of the charged states, so the phenomenology largely factorizes from the details of the dark sector interactions
- The Yukawa theory theory contains both fermion and scalar of arbitrary charges, so can accommodate the phenomenology of a much wider range of models

- We consider direct production of the charged states, so the phenomenology largely factorizes from the details of the dark sector interactions
- The Yukawa theory theory contains both fermion and scalar of arbitrary charges, so can accommodate the phenomenology of a much wider range of models
- We classify the scenarios according to:
 - lacktriangle Discrete charges under the symmetry stabilizing DM (usually Z_2)
 - Electroweak gauge charges
 - \blacktriangleright Decay modes of Z_2 -even state(s) (assume one Lagrangian term dominates decay)

- We consider direct production of the charged states, so the phenomenology largely factorizes from the details of the dark sector interactions
- The Yukawa theory theory contains both fermion and scalar of arbitrary charges, so can accommodate the phenomenology of a much wider range of models
- We classify the scenarios according to:
 - ▶ Discrete charges under the symmetry stabilizing DM (usually Z_2)
 - Electroweak gauge charges
 - ightharpoonup Decay modes of Z_2 -even state(s) (assume one Lagrangian term dominates decay)
- We focus on colour-singlet charged states

• Three broad classes of models:

- Three broad classes of models:
 - **1** Z_2 -**odd scalar:** fermion decays to/mixes with SM
 - ★ Includes 'vectorlike lepton' scenario
 - ★ Fermion decays to gauge/Higgs + lepton; scalar decays to lepton + DM

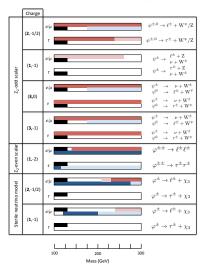
- Three broad classes of models:
 - **1** Z_2 -**odd scalar:** fermion decays to/mixes with SM
 - ★ Includes 'vectorlike lepton' scenario
 - ★ Fermion decays to gauge/Higgs + lepton; scalar decays to lepton + DM
 - **2** Z_2 -odd fermion: scalar decays to/mixes with SM
 - * Includes extended Higgs sector models
 - Scalar decays through Higgs mixing; fermion decays through mixing induced by scalar VEV
 - Strong constraints on scalar VEV from EWPT and photon continuum constraints

- Three broad classes of models:
 - **1** Z_2 -**odd scalar:** fermion decays to/mixes with SM
 - ★ Includes 'vectorlike lepton' scenario
 - ★ Fermion decays to gauge/Higgs + lepton; scalar decays to lepton + DM
 - ② Z_2 -odd fermion: scalar decays to/mixes with SM
 - * Includes extended Higgs sector models
 - Scalar decays through Higgs mixing; fermion decays through mixing induced by scalar VEV
 - Strong constraints on scalar VEV from EWPT and photon continuum constraints
 - Extended symmetry:
 - * One possibility: no new interactions, lightest components of ψ and φ both stable (similar to Feng, Moroi, Randall *et al.*, 1999 and subsequent work)
 - * Another: if there is an additional singlet state n, then Z_2 -even messenger can decay into ${\sf SM}\,+\,n$

- Three broad classes of models:
 - **1** Z_2 -**odd scalar:** fermion decays to/mixes with SM
 - ★ Includes 'vectorlike lepton' scenario
 - ★ Fermion decays to gauge/Higgs + lepton; scalar decays to lepton + DM
 - ② Z_2 -odd fermion: scalar decays to/mixes with SM
 - * Includes extended Higgs sector models
 - Scalar decays through Higgs mixing; fermion decays through mixing induced by scalar VEV
 - * Strong constraints on scalar VEV from EWPT and photon continuum constraints
 - Extended symmetry:
 - * One possibility: no new interactions, lightest components of ψ and φ both stable (similar to Feng, Moroi, Randall *et al.*, 1999 and subsequent work)
 - \star Another: if there is an additional singlet state n, then Z_2 -even messenger can decay into SM $+\ n$
- Some of these are reminiscent of SUSY, 2HDM, etc., but different gauge charges and decay modes allowed in some cases
 - ► Motivate more general electroweak searches

Gauge charges and decay modes

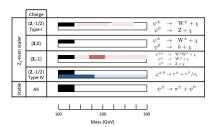
- Consider "reasonable" gauge charges
 - Triplet and lower because higher multiplets have large cross sections
 - ► Similar hypercharge to SM to allow renormalizable decays in minimal model


$\mathrm{SU}(2) imes \mathrm{U}(1)$ charge	Z_2 -odd $arphi$	Z_2 -odd ψ
(1, -1)	$\ell H^* \psi^{\rm c}$	$\varphi(\epsilon \ell_i)\ell_j$
$\left(2,-rac{1}{2} ight)$	$\psi H^* e^{c}$	$\mathcal{L}_{\mathrm{2HDM}}(arphi,h)$
(3 , 0)	$(\epsilon H) \psi^a \sigma^a \ell$	$H^*\varphi H$
(3, -1)	$\ell(\psi^{\rm c})^a \sigma^a H^*$	$ \begin{array}{c} (\epsilon H)\varphi^a\sigma^a H \\ (\epsilon \ell)\varphi^* \ell \end{array} $

Qualitative results

- What kinds of models do we expect to be ruled out? To be accessible at LHC14? To be challenging and study more intensively?
- Dilepton/multilepton searches strongly constrain particles decaying to leptons + gauge bosons or leptons + MET
- Large SU(2) multiplets are mostly ruled out, while singlets are much less constrained
- Tau final states and decays with large QCD backgrounds are among the least constrained from electroweak production
- Scalars are generally less constrained than fermions because of lower cross section

Results summary

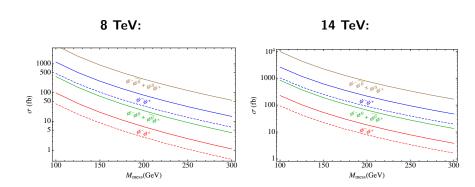

Generation-specific couplings

- Fermion bounds in red
- Scalar bounds in blue
- Dark shading is already excluded at 95 % CL
- Light shading is within reach of LHC14, 300/fb

Results summary

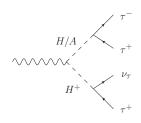
Generation-independent couplings

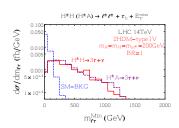
- Fermion bounds in red
- Scalar bounds in blue
- Dark shading is already excluded at 95 % CL
- Light shading is within reach of LHC14, 300/fb

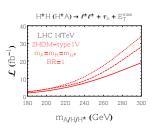

Conclusions and Outlook

- The potential observation of a gamma-ray line around 130 GeV provides an independent motivation for new charged states at the weak scale
- Classify models by the allowed couplings to SM consistent with gauge and discrete symmetries; paramterization applies across UV theories
- Many models are ruled out by dilepton + MET and multilepton searches
- \bullet Models with SU(2) singlets and tau-rich final states are less constrained but can be probed at LHC14
- \bullet A few examples ($\tau\tau$ + MET or disappearing charged tracks) are challenging at the LHC
- A linear collider would be an ideal environment for studying all scenarios!

Back-up slides


Back-up slides


Messenger production cross sections


- Dashed: SU(2) singlet, Y = 1
- Solid: SU(2) doublet, Y = 1/2

Example: Type-IV 2HDM

- $3\tau \rightarrow \ell^{\pm}\ell^{\pm} + \tau_h + \cancel{E}_T$
- Exploit kinematics $(m_{\ell\tau})$

