Dark matter, MFV and RPV SUSY

Lian-Tao Wang University of Chicago

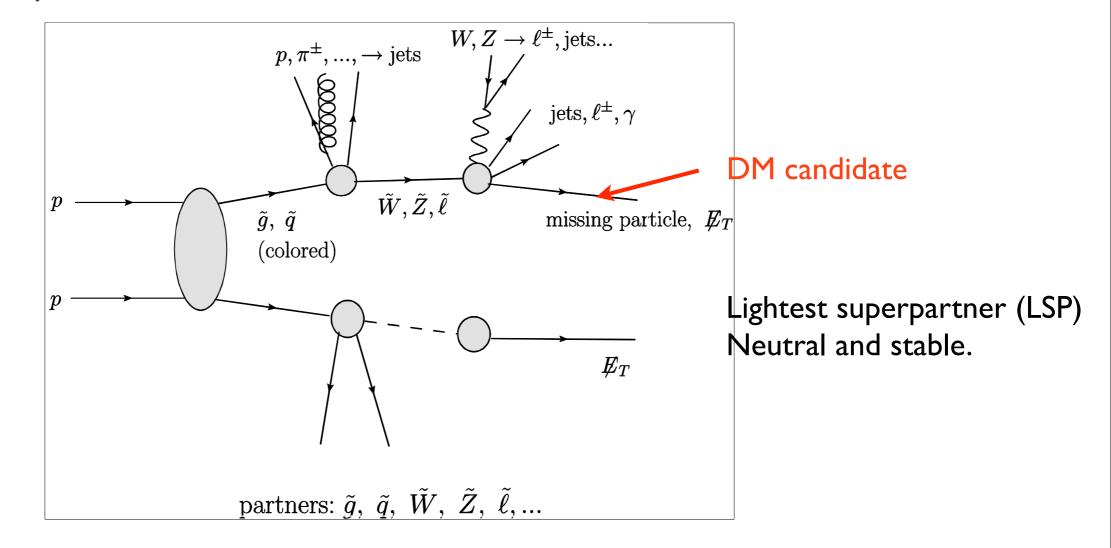
Work in collaboration with Brian Batell and Tongyan Lin

KITP, Snowmass on the Pacific, May 31, 2013

SUSY and SUSY dark matter under some stress.

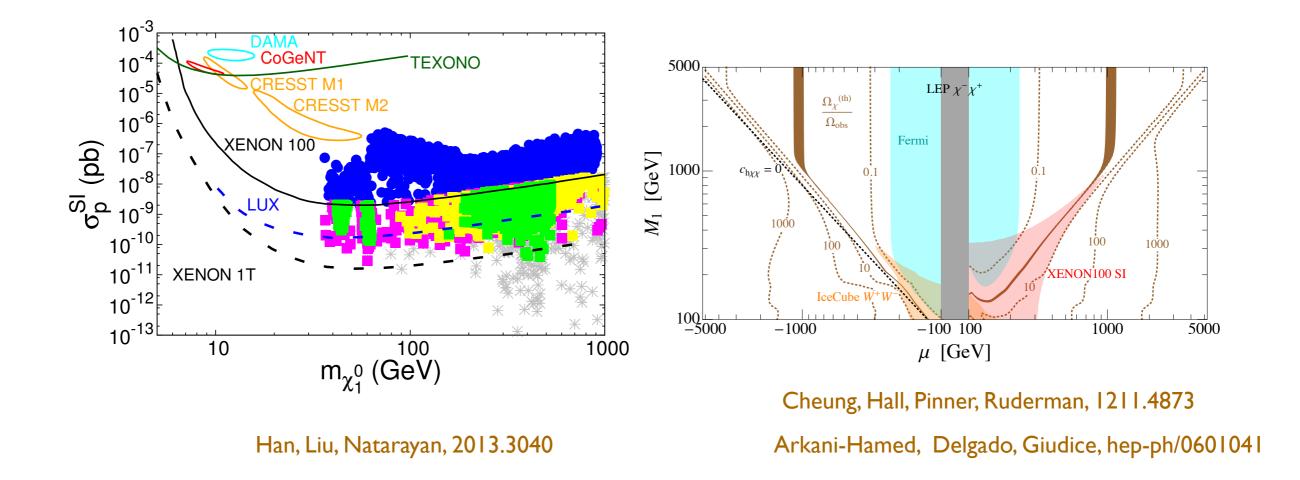
In SUSY like scenario

 DM candidate embedded in an extended TeV new physics scenario



- Discovery should be ``straightforward". Not yet.

Narrow parameter space, could still work.



- The so called "well tempered" scenario.
- Also, A-funnel, stau/stop/squark co-ann.

Cahill-Rowley, Hewett, Ismail, Peskin, Rizzo, 1305.2419 Cohen, Wacker, 1305.2914

- Challenging to see at the LHC. Giudice, Han, Wang and LTW, 1004.4902

dark matter in RPV SUSY

"Hiding SUSY" with R-parity violation:

 $P_R = (-1)^{3(B-L)+2s}$

$$\mathbf{RPV:} \quad W' = \lambda L L \bar{e} + \lambda' Q L \bar{d} + \lambda'' \bar{u} \bar{d} \bar{d} + \bar{\mu} L H_u$$

- R-parity
$$\Rightarrow$$
 stable LSP \Rightarrow MET.

 One can get rid of R-parity, and "turn on" some couplings without violating low energy constraints.

However, this looks ad hoc.

 Many progresses on implementing RPV with symmetry principles.

Minimal flavor violation (MFV) + RPV

C. Csaki, Y. Grossman, B. Heidenreich, 1111.1239

- MFV, all flavor violation coming from SM yukawa couplings.
 - A good framework to address the SUSY flavor problem.
- Imposing MFV on R-parity breaking couplings?
 - MFV+RPV can satisfy all the constraints on RPV!
- For example, the often studied udd coupling would be

$$W_{\rm BNV} = \frac{1}{2} w''(Y_u \,\bar{u})(Y_d \,\bar{d})(Y_d \,\bar{d})$$

But, what about dark matter?

- Need to add new states to MSSM.
- New symmetries to make sure the dark matter candidate is stable.
- However, MFV can be the new symmetry
 - If dark matter candidate is in a flavor multiplet
 MFV itself could stabilize the dark matter.
 Batell, Pradler, Spannowsky, 1105.1781

MFV and DM stability

$$G = G_{\rm SM} \times G_q,$$

$$G_{\rm SM} = SU(3)_c \times SU(2)_L \times U(1)_Y,$$

$$G_q = SU(3)_Q \times SU(3)_{u_R} \times SU(3)_{d_R}$$

- $Q \sim (\mathbf{3}, \mathbf{2}, \frac{1}{6})_{\text{SM}} \times (\mathbf{3}, \mathbf{1}, \mathbf{1})_{G_q},$
- $u_R \sim (\mathbf{3}, \mathbf{1}, \frac{2}{3})_{\mathrm{SM}} \times (\mathbf{1}, \mathbf{3}, \mathbf{1})_{G_q},$
- $d_R \sim (\mathbf{3}, \mathbf{1}, -\frac{1}{3})_{\mathrm{SM}} \times (\mathbf{1}, \mathbf{1}, \mathbf{3})_{G_q},$
- $Y_u \sim (\mathbf{1}, \mathbf{1}, 0)_{\mathrm{SM}} \times (\mathbf{3}, \mathbf{\overline{3}}, \mathbf{1})_{G_q},$
- $Y_d \sim (\mathbf{1}, \mathbf{1}, 0)_{\mathrm{SM}} \times (\mathbf{3}, \overline{\mathbf{1}}, \overline{\mathbf{3}})_{G_q},$
- $\chi \sim (\mathbf{1}, \mathbf{R}_L, Y)_{\text{SM}} \times ((n_Q, m_Q), (n_u, m_u), (n_d, m_d))_{G_q}$

$\boldsymbol{\chi}$ in flavor rep $n_Q \times m_Q$ (tensorial), ...

MFV and DM stability

$$G = G_{\rm SM} \times G_q,$$

$$G_{\rm SM} = SU(3)_c \times SU(2)_L \times U(1)_Y,$$

$$G_q = SU(3)_Q \times SU(3)_{u_R} \times SU(3)_{d_R}$$

 $\begin{array}{lll} Q & \sim & (\mathbf{3}, \mathbf{2}, \frac{1}{6})_{\mathrm{SM}} \times (\mathbf{3}, \mathbf{1}, \mathbf{1})_{G_q}, \\ u_R & \sim & (\mathbf{3}, \mathbf{1}, \frac{2}{3})_{\mathrm{SM}} \times (\mathbf{1}, \mathbf{3}, \mathbf{1})_{G_q}, \\ d_R & \sim & (\mathbf{3}, \mathbf{1}, -\frac{1}{3})_{\mathrm{SM}} \times (\mathbf{1}, \mathbf{1}, \mathbf{3})_{G_q}, \\ Y_u & \sim & (\mathbf{1}, \mathbf{1}, 0)_{\mathrm{SM}} \times (\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1})_{G_q}, \\ Y_d & \sim & (\mathbf{1}, \mathbf{1}, 0)_{\mathrm{SM}} \times (\mathbf{3}, \overline{\mathbf{1}}, \overline{\mathbf{3}})_{G_q}, \\ \chi & \sim & (\mathbf{1}, \mathbf{R}_L, Y)_{\mathrm{SM}} \times ((n_Q, m_Q), (n_u, m_u), (n_d, m_d))_{G_q} \end{array}$

$\boldsymbol{\chi}$ in flavor rep $n_Q \times m_Q$ (tensorial), ...

discrete Z₃ sub-group
$$U = (e^{2\pi i k_c/3})_{SU(3)_c} (e^{2\pi i k_Q/3})_{SU(3)_Q} (e^{2\pi i k_u/3})_{SU(3)_{u_R}} (e^{2\pi i k_d/3})_{SU(3)_{d_R}}$$

	$SU(3)_c$	$SU(3)_Q$	$SU(3)_{u_R}$	$SU(3)_{d_R}$
Q	k_c	k_Q	0	0
u_R	k_c	0	k_u	0
d_R	k_c	0	0	k_d
Y_u	0	k_Q	$-k_u$	0
Y_d	0	k_Q	0	$-k_d$
χ	0	$(n_Q - m_Q)k_Q$	$(n_u - m_u)k_u$	$(n_d - m_d)k_d$

U =	$\left(e^{2\pi t}\right)$	$^{ik_c/3})_{SU(3)_c}$	$\left(e^{2\pi i k_Q/3}\right)_{SU(3)}$	$_{)Q}\left(e^{2\pi ik_{u}/3}\right)_{SU}$	$U(3)_{u_R} \left(e^{2\pi i k_d / k_d} \right)$	$^{3})_{SU(3)_{d_{R}}}$
		$SU(3)_c$	$SU(3)_Q$	$SU(3)_{u_R}$	$SU(3)_{d_R}$	
	Q	k _c	k_Q	0	0	
	u_R	k_c	0	k_u	0	
	d_R	k_c	0	0	k_d	
	Y_u	0	k_Q	$-k_u$	0	
	Y_d	0	k_Q	0	$-k_d$	
	χ	0	$(n_Q - m_Q)k_Q$	$(n_u - m_u)k_u$	$(n_d - m_d)k_d$	

$$U \text{ is a symmetry of} \\ \text{Yukawa couplings if} \qquad \begin{array}{l} (k_c + k_Q) \mod 3 &= 0 \\ (k_c + k_u) \mod 3 &= 0 \\ (k_c + k_d) \mod 3 &= 0 \\ (k_Q - k_u) \mod 3 &= 0 \\ (k_Q - k_d) \mod 3 &= 0 \end{array} \text{ e.g.: } \mathbf{k_c} = \mathbf{2}, \ \mathbf{k_Q} = \mathbf{k_u} = \mathbf{k_d} = \mathbf{I} \\ \end{array}$$

x stable if $((n_Q - m_Q)k_Q + (n_u - m_u)k_u + (n_d - m_d)k_d) \mod 3 \neq 0$

Stable reps under $SU(3)_Q \times SU(3)_u \times SU(3)_d$: (3,1,1), (1,3,1), (6,1,1), ...

A simple model with (1,3,1) Batell, T. Lin, LTW, in progress

$$W = \overline{\Phi}_X M_X \Phi_X + M_Y \overline{\Phi}_Y \Phi_Y + \overline{u} \lambda \Phi_X \Phi_Y$$

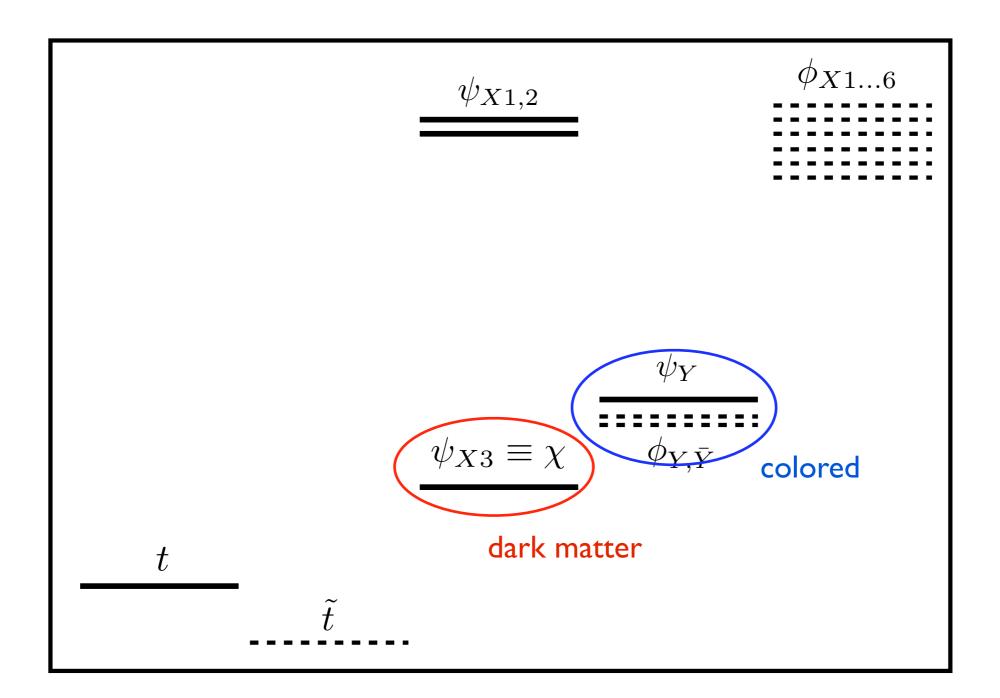
$$\Phi_X \supset (\phi_X, \psi_X) \sim (\mathbf{1}, \mathbf{1})_0 \times (\mathbf{1}, \mathbf{3}, \mathbf{1})_{G_q} \longleftarrow \text{Dark matter multiplet}$$

$$\Phi_Y \supset (\phi_Y, \psi_Y) \sim (\mathbf{3}, \mathbf{1})_{2/3} \times (\mathbf{1}, \mathbf{1}, \mathbf{1})_{G_q} \longleftarrow \text{colored}$$

A simple model with (1,3,1) Batell, T. Lin, LTW, in progress

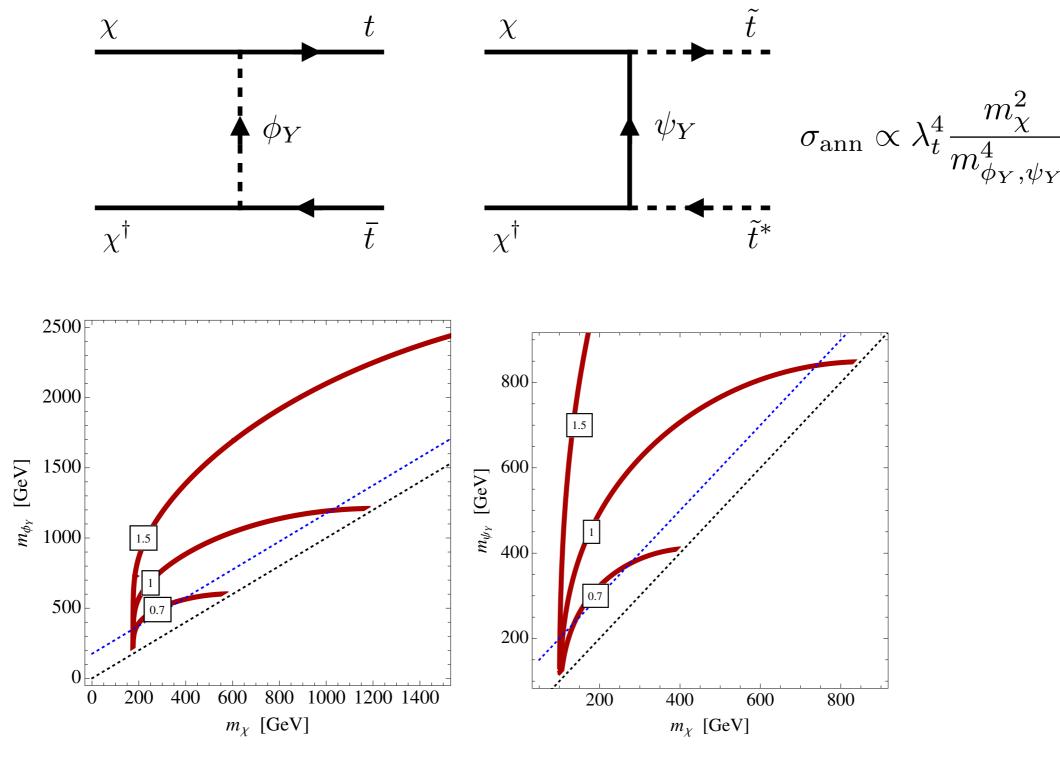
$$\begin{split} W &= \overline{\Phi}_X M_X \Phi_X + M_Y \overline{\Phi}_Y \Phi_Y + \overline{u} \,\lambda \,\Phi_X \,\Phi_Y \\ &\Phi_X \supset (\phi_X, \psi_X) \sim (\mathbf{1}, \mathbf{1})_0 \times (\mathbf{1}, \mathbf{3}, \mathbf{1})_{G_q} &\longleftarrow \text{Dark matter multiplet} \\ &\Phi_Y \supset (\phi_Y, \psi_Y) \sim (\mathbf{3}, \mathbf{1})_{2/3} \times (\mathbf{1}, \mathbf{1}, \mathbf{1})_{G_q} &\longleftarrow \text{Colored} \\ K_X &= \hat{\Phi}_X^{\dagger} \hat{k}_X \hat{\Phi}_X + \hat{\Phi}_X \hat{k}_X \hat{\Phi}_X^{\dagger} & \text{colored} \\ &+ \left[\frac{X^{\dagger}}{M} \hat{\Phi}_X \hat{\mu}_X \hat{\Phi}_X + \frac{X}{M} \hat{\Phi}_X^{\dagger} \hat{\kappa}_X \hat{\Phi}_X + \frac{X}{M} \hat{\Phi}_X \hat{\kappa}_X \hat{\Phi}_X^{\dagger} - \frac{X^{\dagger} X}{M^2} \hat{\Phi}_X \hat{B}_X \hat{\Phi}_X + \text{h.c.} \right] \\ &- \frac{X^{\dagger} X}{M^2} \hat{\Phi}_X^{\dagger} \hat{m}_X \hat{\Phi}_X - \frac{X^{\dagger} X}{M^2} \hat{\Phi}_X \hat{m}_X \hat{\Phi}_X^{\dagger} + \dots, \\ \hat{k}_X &= 1 + k \, Y_u^{\dagger} Y_u + \dots, \\ \hat{k}_X &= 1 + k \, Y_u^{\dagger} Y_u + \dots, \\ \hat{k}_X &= \kappa_0 + \kappa_1 \, Y_u^{\dagger} Y_u + \dots, \\ \hat{\kappa}_X &= \kappa_0 + \kappa_1 \, Y_u^{\dagger} Y_u + \dots, \\ \hat{K}_X &= \kappa_0 + \kappa_1 \, Y_u^{\dagger} Y_u + \dots, \\ \hat{B}_X &= B_0 + B_1 \, Y_u^{\dagger} Y_u + \dots, \end{split}$$

An example of spectrum



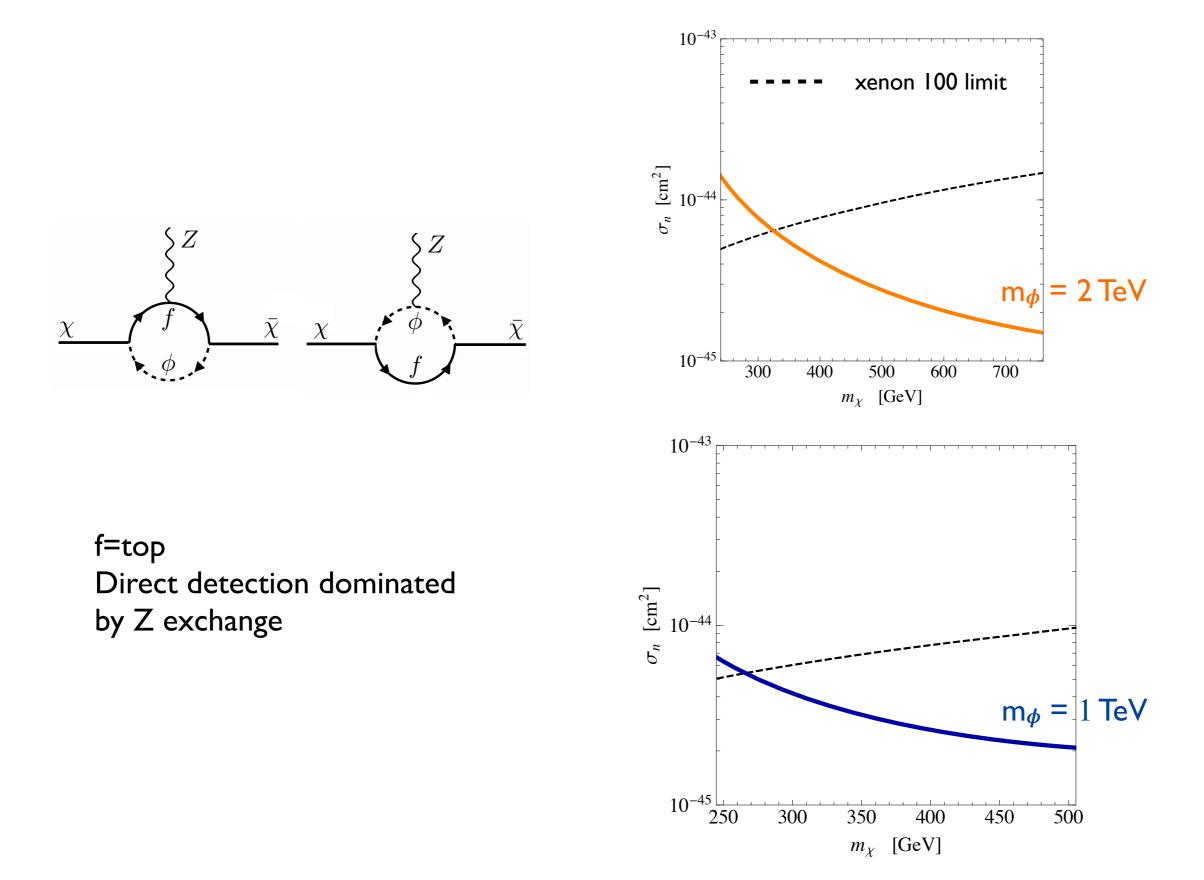
"top-philic", with $W = \lambda_t \phi_X \phi_Y t_R$

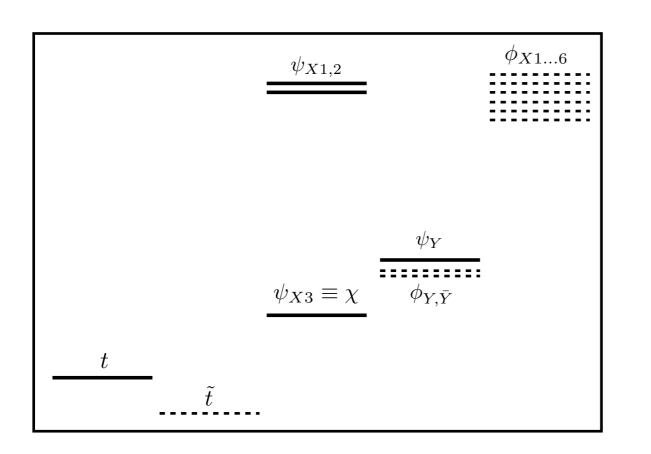
Relic abundance $W = \lambda_t \phi_X \phi_Y t_R$



contour of $\lambda_t\;$ with correct relic abundance

Direct detection vs relic abundance

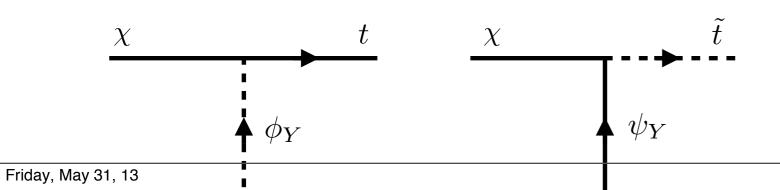




$$pp \rightarrow \phi_Y \phi_Y^*, \ \phi_Y \rightarrow t + \chi$$

But not the stop.
 $pp \rightarrow \psi_Y \overline{\phi}_Y, \ \psi_Y \rightarrow \tilde{t} + \chi$
 $\tilde{t} \rightarrow jj \ (udd \text{ RPV})$
"hidden" stop

- May find "heavy stop", but theory is natural.



Conclusions.

- SUSY and SUSY LSP dark matter could still be the answer, e.g. benchmarks in the pMSSM, etc.
- Another route: Dark matter in RPV+MFV SUSY.
 - ▶ Interesting collider signals.