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Lagrangian Feynman Rules

27 Massless vectors and examples from QED

Similarly, [13] = 0. Thus [12] = [23] = [31] = 0 which means that these three square spinors
are proportional:

|1] / |2] / |3] . (2.58)

Alternatively, 3-particle kinematics could hold with square brackets non-vanishing and

|1i / |2i / |3i . (2.59)

To summarize, special 3-particle kinematics is the statement that for three on-shell massless
momenta satisfying momentum conservation the associated angle and square spinors must
satisfy either (2.58) or (2.59). As a consequence:

1. a non-vanishing on-shell 3-particle amplitude with only massless particles can only depend
on either angle brackets or square brackets of the external momenta, never both.

2. Since for real momenta, angle and square spinors are each others complex conjugates, on-
shell 3-particle amplitude of only massless particles can only be non-vanishing in complex
momenta.4 Although they do not occur in Nature, the massless complex momentum 3-
point amplitudes are extremely useful for building up higher-point amplitudes recursively.
In many cases, the on-shell 3-point amplitudes are the key building blocks. More about
this in Chapter 3.

• Finally, let us comment on choices of q in (2.54). Naively, it might seem that choosing |q] / |2]
gives zero for the amplitude; this would be inconsistent with our q-independent non-vanishing
result (2.56). However, this choice gives [3q] / [23], so the denominator therefore vanishes
by special kinematics. One could say that the zero [22] in the numerator is cancelled by the
zero [23] in the denominator, or simply that |q] / |2] is not a legal choice since it makes the
polarization vector ✏µ

�
(p3; q) divergent.

At this stage it is natural to ask how, then, we know if a given 3-point amplitude of massless
particles should depend on angle brackets or square-brackets? This has a good answer, which we
reveal in Section 2.6. For now, let us carry on exploring QED amplitudes in the spinor-helicity
formalism.

. Example. Consider the QED Compton scattering process: e�� ! e��. By crossing symmetry,
we can view this as the amplitude A4(f̄f��) with all particles outgoing and labeled by
momenta 1,2,3,4:

iA4(f̄f��) =
1 2

3 4

+
1 2

34

= (ie)2 u2 /✏4
�i(/p1 + /p3)

(p1 + p3)2
/✏3 v1 + (3 $ 4) . (2.60)

Note that we have an odd number of gamma-matrices sandwiched between two spinors. If

4 Or using a (�,+,�,+) spacetime signature, cf. footnote 1.
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Amplitude

Unbroken symmetries Ward identities
(e.g. conservation of some global charge)

Spont. Broken symmetries Soft theorems
(e.g. Adler zero in pion EFT)

Modern On-shell Approach
Start with the on-shell amplitudes
& impose consistency conditions 
in order to 

Compute the amplitudes of given 
class of models efficiently w/o 
reference to the Lagrangian

Explore space of possible QFT with
given spectrum and symmetries

Derive general results about QFTs / EFTs

Turning the traditional QFT approach upside-down

Revers
e!



Effective Field Theory (EFT)
EFT-ology I: 
To given order in the derivative-expansion, include all higher-derivative gauge-invariant local operators 
permitted by the symmetries. 

On-shell amplitudes methods are VERY efficient for this. 

Lagrangian formulation: How many gauge-invariant local operators are there subject to 
1) integration-by-parts and 2) the EOM and 3) field redefinitions?

On-shell local operators in 1-1 correspondence on-shell matrix elements

Amplitudes formulation: How many independent on-shell matrix elements are there modulo 
momentum conservation and Bose/Fermi symmetry of identical states?



Examples
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@22�4

Abelian => Bose symmetry => symmetric degree k polynomials in s,t,u indep. under  to s+t+u=0 

Such polynomials are of the form 
<latexit sha1_base64="s0HM31GOHMsA7lZjPqhHLggTyNE=">AAACCXicbZDLSsNAFIYnXmu9VV26GSxCRShJKeqy6MZlBXuBNi2T6aQdOpmEmROhhG7d+CpuXCji1jdw59s4TbPQ1h8OfPznHGbO70WCa7Dtb2tldW19YzO3ld/e2d3bLxwcNnUYK8oaNBShantEM8ElawAHwdqRYiTwBGt545tZv/XAlOahvIdJxNyADCX3OSVgrH4BlzTEZ71E9p2p4V7lHEzFvUrqVaa4XyjaZTsVXgYngyLKVO8XvrqDkMYBk0AF0brj2BG4CVHAqWDTfDfWLCJ0TIasY1CSgGk3SS+Z4lPjDLAfKlMScOr+3khIoPUk8MxkQGCkF3sz879eJwb/yk24jGJgks4f8mOBIcSzWPCAK0ZBTAwQqrj5K6YjoggFE17ehOAsnrwMzUrZuShX76rF2nUWRw4doxNUQg66RDV0i+qogSh6RM/oFb1ZT9aL9W59zEdXrGznCP2R9fkDYzyYPQ==</latexit>

(stu)n1(s2 + t2 + u2)n2

So, count of indep. operators is number of ways to write  
<latexit sha1_base64="js2cyqkx9gK6r6oVFbypxtTizZA=">AAAB+HicbVBNS8NAEJ34WetHox69LBZBEEpSi3oRil48VrAf0Iaw2W7apZtN2N0INfSXePGgiFd/ijf/jds2B219MPB4b4aZeUHCmdKO822trK6tb2wWtorbO7t7JXv/oKXiVBLaJDGPZSfAinImaFMzzWknkRRHAaftYHQ79duPVCoWiwc9TqgX4YFgISNYG8m3SyN0jc6F76IzVBV+1bfLTsWZAS0TNydlyNHw7a9ePyZpRIUmHCvVdZ1EexmWmhFOJ8VeqmiCyQgPaNdQgSOqvGx2+ASdGKWPwliaEhrN1N8TGY6UGkeB6YywHqpFbyr+53VTHV55GRNJqqkg80VhypGO0TQF1GeSEs3HhmAimbkVkSGWmGiTVdGE4C6+vExa1Yp7Uand18r1mzyOAhzBMZyCC5dQhztoQBMIpPAMr/BmPVkv1rv1MW9dsfKZQ/gD6/MHaL+Q/w==</latexit>

k = 3n1 + 2n2

Example k=11 n1 odd -> n1 =1 or 3     =>     there are 2 such indep. operators.

So:    Counting easy. Direct construction of local matrix elements easy. Basis changes easy. 

1
<latexit sha1_base64="e1vG+wyBBCmfphqK2zhpN8Dbl1g=">AAAB/XicbVDLSsNAFL3xWesrPnZuBovgqiSlqMuiG5cV7APatEymk3boJBlmJkINxV9x40IRt/6HO//GSZuFth64cDjn3pl7jy84U9pxvq2V1bX1jc3CVnF7Z3dv3z44bKo4kYQ2SMxj2faxopxFtKGZ5rQtJMWhz2nLH99kfuuBSsXi6F5PBPVCPIxYwAjWRurbx12BpWaY99LKeIq6YsR61b5dcsrODGiZuDkpQY563/7qDmKShDTShGOlOq4jtJdmLxNOp8VuoqjAZIyHtGNohEOqvHS2/RSdGWWAgliaijSaqb8nUhwqNQl90xliPVKLXib+53USHVx5KYtEomlE5h8FCUc6RlkUaMAkJZpPDMFEMrMrIiMsMdEmsKIJwV08eZk0K2X3oly9q5Zq13kcBTiBUzgHFy6hBrdQhwYQeIRneIU368l6sd6tj3nripXPHMEfWJ8/JEOVBw==</latexit>

@2k�4
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@2k�4

Same principles (and more machinery) for MASSIVE particles. Useful application: SMEFT

Spinor-helicity formalism makes this very efficient:  

<latexit sha1_base64="BptiTh4WcPgCbmcb4uVXSprhqEQ=">AAACInicbVDLSgMxFM34rPVVdekmWARBLDNSfOyKblxWsA/o1HInTdvQJDMkGaGUfosbf8WNC0VdCX6MmekstPVAkpNz7iW5J4g408Z1v5yFxaXlldXcWn59Y3Nru7CzW9dhrAitkZCHqhmAppxJWjPMcNqMFAURcNoIhteJ33igSrNQ3plRRNsC+pL1GAFjpU7h0ucg+5xiP9Ls/nh6nGC/D0JAcp8Sq0QDlm0q7egUim7JTYHniZeRIspQ7RQ+/G5IYkGlIRy0bnluZNpjUIYRTid5P9Y0AjKEPm1ZKkFQ3R6nI07woVW6uBcqu6TBqfq7YwxC65EIbKUAM9CzXiL+57Vi07toj5mMYkMlmT7Uizk2IU7ywl2mKDF8ZAkQxexfMRmAAmJsqnkbgjc78jypn5a8s1L5tlysXGVx5NA+OkBHyEPnqIJuUBXVEEGP6Bm9ojfnyXlx3p3PaemCk/XsoT9wvn8AO8ei4g==</latexit>

h + ��+����i
massless

k   =    1,        3,         5,…
dim  = 10,       12,      14,…

# operators  =    2,     21,     114,… 
Comp time        = 0.1s,  1.6s,  5min,…
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Application in SMEFT

Example
3- and 4-pt SMEFT operators systematically 
characterized by 

Arkani-Hamed, Huang, and Huang (2017)

Aoude, Durieux, Kitahara, Machado, Shadmi, Weiss (2018-21) 

using the massive spinor helicity formalism of 

Many other applications of these ideas in formal theory, 
such as for local counterterms for UV divergences in 
perturbative supergravity, higher-derivative corrections 
to chiral perturbation theory, Galileons, finite local 
counterterms in Born-Infeld, monopoles, dark matter…

Further expanded technique and analysis by Accettulli Huber + De Angelis (2022) and De Angelis (2022).

Some comparisons in certain sectors so far with Lagrangian approaches, 
for example w/ Henning Lu Melia Murayama. Plus in follow-up papers.

Elvang, Freedman, Kiermaier; Beisert, Morales; Mitchell; 
Hadjiantonis, Jones, Paranjape; Bern, Parra-Martinez, Roiban; 
Csaki, Hong, Shirman, Telem, Terning; 
Falkowski, Isabella, Machado;...



Anomalous dimension mixing matrix

Surprising 1-loop non-renormalization results for SMEFT dim 6 
operators. Alonso, Jenkins, Manohar (2014) 
(Grojean, Jenkins, Manohar, Trott; Elias-Miro, Espinosa, Masso, Pomarol (2013))

Explained by Cheung and C-H Shen (2015) using on-shell amplitudes 
methods to characterize the possible local operators at dim 5 and 6.

Using on-shell unitarity methods to get anomalous dimensions and beta functions from Caron-Huot and Wilhelm (2016) ,
new non-renormalization theorems derived for dim 5 through 7 SMEFT operators by
Bern, Parra-Martinez, and Sawyer (2019). 2-loop SMEFT anomalous dim’s Bern, Parra-Martinez, and Sawyer (2020). 
Mixing matrix at Dim 8 in Accettulli Huber + De Angelis (2022).

Under RG, operators can mix.
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Non-renormalization and operator mixing via on-shell methods

Zvi Bernab, Julio Parra-Martineza, and Eric Sawyera

aMani L. Bhaumik Institute for Theoretical Physics,
UCLA Department of Physics and Astronomy,

Los Angeles, CA 90095, USA

bTheoretical Physics Department, CERN,
1211 Geneva 23, Switzerland

Using on-shell methods, we present a new perturbative non-renormalization theorem for operator
mixing in massless four-dimensional quantum field theories. By examining how unitarity cuts of
form factors encode anomalous dimensions we show that longer operators are often restricted from
renormalizing shorter operators at the first order where there exist Feynman diagrams. The theorem
applies quite generally and depends only on the field content of the operators involved. We apply
our theorem to operators of dimension five through seven in the Standard Model Effective Field
Theory, including examples of nontrivial zeros in the anomalous-dimension matrix at one through
four loops. The zeros at two and higher loops go beyond those previously explained using helicity
selection rules. We also include explicit sample calculations at two loops.

Introduction: A key challenge in particle physics is to
identify physics beyond the Standard Model. Because
current experimental data at colliders is well described by
the Standard Model, it is unclear which theoretical direc-
tion will ultimately prove to be the one chosen by Nature.
It is therefore important to quantify new physics beyond
the Standard Model in a systematic, model-independent
manner. The theoretical framework for doing so is via
effective field theories that extend the Standard Model
Lagrangian by adding higher-dimension operators [1, 2]:

∆L =
∑

i

ciOi , (1)

with coefficients ci suppressed by powers of a high-energy
scale Λ dictated by the dimension of Oi. The result-
ing theory, known as the Standard Model Effective Field
Theory (SMEFT), is reviewed in Ref. [3].
As for all quantum field theories, renormalization

induces mixing of these operators. This can be
parametrized by the renormalization group equation,

16π2 ∂ci
∂ logµ

= γUV
ij cj , (2)

where γUV
ij is the anomalous-dimension matrix and µ is

the renormalization scale. Usually, γUV
ij is calculated per-

turbatively in the marginal couplings of the Standard
Model Lagrangian, which we will denote collectively as
g. The complete one-loop anomalous-dimension matrix
for operators up to dimension six has been computed in
Refs. [4, 5]. These calculations reveal a number of van-
ishing entries related to supersymmetry [6], which seem
surprising at first because there are valid diagrams that
can be written down. These zeros have been elegantly
explained [7] using tree-level helicity selection rules [8],
which set certain classes of tree-level amplitudes to zero.
The tree-level vanishings imply through unitarity that

certain logarithms and their associated anomalous di-
mensions are not present. Although these selection rules
are reminiscent of supersymmetric ones, they hold for
generic massless quantum field theories in four dimen-
sions.
Might it be possible that beyond one loop there are

new nontrivial zeros? At first sight, this seems rather
unlikely because the helicity selection rules fail to hold
at loop level. In this Letter, we show that, contrary to
expectations, there are, in fact, additional nontrivial ze-
ros in the higher-loop anomalous-dimension matrix. As
in Ref. [7], our only assumption is that the theory does
not contain any relevant couplings (e.g. masses). To state
the new nonrenormalization theorem we define the length
of an operator, l(O), as the number of fundamental field
insertions in O. Then the statement of theorem is as
follows:

Consider operators Os and Ol such that l(Ol) > l(Os).
Ol can renormalize Os at L loops only if L > l(Ol) −
l(Os).

At fixed loop order, sufficiently long operators cannot
renormalize short operators because there would be too
many legs to form a diagram with the right structure.
Such zeros in the anomalous-dimension matrix are triv-
ial. As written above the theorem applies non-trivially
at (l(Ol)− l(Os))-loops, i.e., the first loop order at which
there could be renormalization because diagrams exist.
However, in a general theory with multiple types of fields,
the first renormalization can be delayed even further, de-
pending on the precise field content of the two operators.
We encapsulate this into the more general rule:

If at any given loop order, the only diagrams for a ma-
trix element with the external particle content of Os

but an insertion of Ol involve scaleless bubble integrals,
there is no renormalization of Os by Ol.
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form factors encode anomalous dimensions we show that longer operators are often restricted from
renormalizing shorter operators at the first order where there exist Feynman diagrams. The theorem
applies quite generally and depends only on the field content of the operators involved. We apply
our theorem to operators of dimension five through seven in the Standard Model Effective Field
Theory, including examples of nontrivial zeros in the anomalous-dimension matrix at one through
four loops. The zeros at two and higher loops go beyond those previously explained using helicity
selection rules. We also include explicit sample calculations at two loops.

Introduction: A key challenge in particle physics is to
identify physics beyond the Standard Model. Because
current experimental data at colliders is well described by
the Standard Model, it is unclear which theoretical direc-
tion will ultimately prove to be the one chosen by Nature.
It is therefore important to quantify new physics beyond
the Standard Model in a systematic, model-independent
manner. The theoretical framework for doing so is via
effective field theories that extend the Standard Model
Lagrangian by adding higher-dimension operators [1, 2]:

∆L =
∑

i

ciOi , (1)

with coefficients ci suppressed by powers of a high-energy
scale Λ dictated by the dimension of Oi. The result-
ing theory, known as the Standard Model Effective Field
Theory (SMEFT), is reviewed in Ref. [3].
As for all quantum field theories, renormalization

induces mixing of these operators. This can be
parametrized by the renormalization group equation,

16π2 ∂ci
∂ logµ

= γUV
ij cj , (2)

where γUV
ij is the anomalous-dimension matrix and µ is

the renormalization scale. Usually, γUV
ij is calculated per-

turbatively in the marginal couplings of the Standard
Model Lagrangian, which we will denote collectively as
g. The complete one-loop anomalous-dimension matrix
for operators up to dimension six has been computed in
Refs. [4, 5]. These calculations reveal a number of van-
ishing entries related to supersymmetry [6], which seem
surprising at first because there are valid diagrams that
can be written down. These zeros have been elegantly
explained [7] using tree-level helicity selection rules [8],
which set certain classes of tree-level amplitudes to zero.
The tree-level vanishings imply through unitarity that

certain logarithms and their associated anomalous di-
mensions are not present. Although these selection rules
are reminiscent of supersymmetric ones, they hold for
generic massless quantum field theories in four dimen-
sions.
Might it be possible that beyond one loop there are

new nontrivial zeros? At first sight, this seems rather
unlikely because the helicity selection rules fail to hold
at loop level. In this Letter, we show that, contrary to
expectations, there are, in fact, additional nontrivial ze-
ros in the higher-loop anomalous-dimension matrix. As
in Ref. [7], our only assumption is that the theory does
not contain any relevant couplings (e.g. masses). To state
the new nonrenormalization theorem we define the length
of an operator, l(O), as the number of fundamental field
insertions in O. Then the statement of theorem is as
follows:

Consider operators Os and Ol such that l(Ol) > l(Os).
Ol can renormalize Os at L loops only if L > l(Ol) −
l(Os).

At fixed loop order, sufficiently long operators cannot
renormalize short operators because there would be too
many legs to form a diagram with the right structure.
Such zeros in the anomalous-dimension matrix are triv-
ial. As written above the theorem applies non-trivially
at (l(Ol)− l(Os))-loops, i.e., the first loop order at which
there could be renormalization because diagrams exist.
However, in a general theory with multiple types of fields,
the first renormalization can be delayed even further, de-
pending on the precise field content of the two operators.
We encapsulate this into the more general rule:

If at any given loop order, the only diagrams for a ma-
trix element with the external particle content of Os

but an insertion of Ol involve scaleless bubble integrals,
there is no renormalization of Os by Ol.
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Under RG, operators mix. 

Important for interpretation of experimental results
to understand how. Mereghetti ’s talk



EFT geometry

Higgs EFT formulated geometrically in terms of curvature on the scalar manifold 

Alonso, Jenkins, Manohar (2015)

Picked up recently from an on-shell amplitudes perspective: 

Alonso, Jenkins, Manohar (2016)
Cheung, Helset, Parra-Martinez (2021+22)
T. Cohen, N. Craig, X. Lu, Sutherland (2022) 

Geometry-kinematics duality 



EFT-ology II: 
The higher-derivative operators appear with generic coefficients naturally expected to be of order ~1 in units 
of the scale of the UV physics. 

… so if these coefficients are not ~1  (say  <<1 or >>1 or even 0) we have some explanation to do.

UV-completable (i.e. non-swampland) models have constraints on the Wilson coefficients. 

Exploring those bounds are the subject of the S-matrix bootstrap / EFT-hedron / weak gravity conjecture via amplitudes

Adams, Arkani-Hamed, Dubovski, Nicolis, Rattazzi; Arkani-Hamed, T-C Huang, Y-t Huang; Vafa, Ooguri; 
Arkani-Hamed, Y-t Huang , J-Y Liu, Cheung, Remmen, Jones, McPeak, Caron-Huot, …

Bottom-up bootstrap of string theory via amplitudes: 

Arkani-Hamed, Y-t Huang, Vieira, Penedones, Guerrieri, Komargodski, Sever, Zhiboedov, Alonso, Rodina,
Eberhardt, Mizera, Liu, Wang, Van Duong, Mazáč, Rastelli, Simmons-Duffin, Bellazzini, Miro, Rattazzi, 
Riembau, Riva, Tolley, Wang, S-Y Zhou, Parra-Martinez,…

Related: Snowmass white paper on bootstrapping string theory by Gopakumar, Perlmutter, Pufu, Yin



EFTs … and so much more

Soft theorems in EFTs and bootstrapping exceptional EFTs

Celestial amplitudes & EFTs

Cheung, Trnka, Elvang, Jones, Naculich, Hadjiantonis, Paranjape, Helset, Parra-Martinez, Z Yin,C-H Shen. I. Low, 
Kampf, Novotný, …

Arkani-Hamed, Pate, Raclariu, Strominger

Double-copy in EFTs

BCJ-based  Carrasco, Rodina, Zekioglu
KLT bootstrap HH Chi, Elvang, Herderschee, Jones, Paranjape
Connecting (4pt) Durieux, Grojean, Bonnefoy, Machado, Roosmale Nepveu

Gravitional physics, LIGO

Solon’s talk



On-shell amplitudes methods in EFTs

Very active and growing field of research, attracting a lot of young researchers

Impact both on the front of

Advancing our understanding of Quantum Field Theory on the formal side

And direct applications to particle physics in SMEFT, Higgs EFT, …

the pursuit of the mathematical truth and beauty  

& 

experimental + pheno particle physics and description of Nature 

Those are the pillars of our field: the interplay between 


