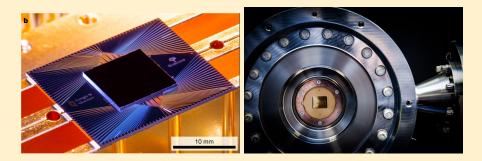

Quantum Simulations for High Energy Physics Hank Lamm

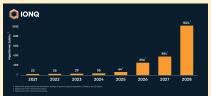
Quantum Simulation for High-energy Physics


Christian Bauer,^{1, a} Zohreh Davoudi,^{2, b} A. Baha Balantekin,³ Tanmoy Bhattacharya,⁴ Marcela Carena,^{5,6,7} Wibe A. de Jong,¹ Nate Gemelke,⁸ Dmitri Kharzeev,⁹ Henry Lamm,⁵ Ying-Ying Li,⁵ Yannick Meurice,¹⁰ Benjamin Nachman,¹ Guido Pagano,¹¹ John Preskill,¹² Alessandro Roggero,^{13,14} David I. Santiago,^{15,16} Martin J. Savage,¹⁷ Irfan Siddiqi,^{15,16,18} George Siopsis,¹⁹ Yukari Yamauchi,² Kübra Yeter-Aydeniz,²⁰ and Other authors²¹

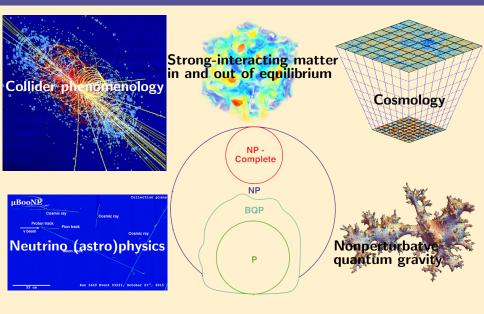
The real credit belongs to Christian and Zohreh

What is the state of QC? Nasty, brutish and short

 $\mathcal{O}(10^{1-2})$ qubits with entangling gate fidelities of $\sim 90-99\%$


 $\implies \mathcal{O}(10^{1-2})$ clock cycles with $\mathcal{O}(10^3)$ CLOPs

Where might we be by next Snowmass?


Roadmaps: $\mathcal{O}(10^3)$ qubits in ≤ 10 years Varying levels of QEC & circuit depth Similar to early LFT: $8^3 \times 20 \mathbb{Z}_2^{[1]}$ Important for theorists to be involved

Creutz, M., L. Jacobs, and C. Rebbi. In: Phys. Rev. D 20 (1979). Ed. by Julve, J. and M. Ramón-Medrano.

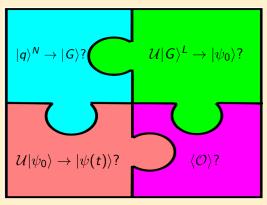
Hank Lamm

QS for HEP

Fundamentally, HEP requires QC

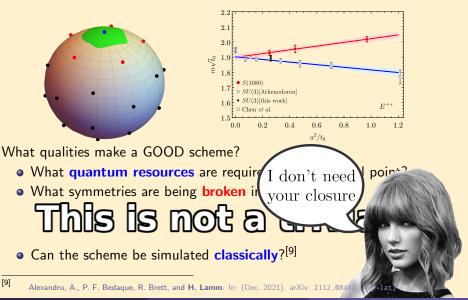
Hank Lamm

What could we learn?


Nonperturbatve & Nonequilibrium Physics

- What effect does quantum interference have on parton showers?^[2]
- Does the QGP respect KSS conjecture?^[3]
- How do quantum theories thermalize?^[4]
- What is the neutron star equation of state observed with LIGO?^[5]
- Are inflationary predictions robust to quantum preheating?^[6]
- Do collective neutrino oscillations play a role in supernovae?^[7]
- Does entanglement impose nontrivial constrains on bootstrap?^[8]
- What are chiral fermions?
- What insight does quantum information give into quantum gravity?
- What is the behavior of nonperturbative SUSY?
- [2] Bauer, C. W., M. Freytsis, and B. Nachman. In: (Feb. 2021). arXiv: 2102.05044 [hep-ph].
- [3] Cohen, T. D., H. Lamm, S. Lawrence, and Y. Yamauchi. In: (Apr. 2021). arXiv: 2104.02024 [hep-lat].
- [4] Jong, W. A. de et al. In: (June 2021). arXiv: 2106.08394 [quant-ph].
- [5] Clemente, G. et al. In: Phys. Rev. D 101 (2020). arXiv: 2001.05328 [hep-lat].
- [6] Liu, J. and Y.-Z. Li. In: Phys. Rev. D 104 (2021). arXiv: 2009.10921 [quant-ph].
- - Beane, S. R., D. B. Kaplan, N. Klco, and M. J. Savage. In: Phys. Rev. Lett. 122 (2019). arXiv: 1812.03138 [nucl-th].

Hank Lamm


What "champagne problems" need to be solved?

- Encoding: How are bosons represented as registers?
- Initalize: How can registers be set to a state?
- **Propagate**: How can gates evolve states?
- Evaluate: How can observables be computed?

• Mitigate: Can LFT-specific QEC be cheaply designed?

Infinite bosonic Hilbert space must be encoded

Today's η estimate: $\mathcal{O}(10^5)$ q & $\mathcal{O}(10^{49})$ T-gates^[10]

- Quarks and Gluons on $L^d = 10^3$ lattice
- Use Kogut-Susskind Hamiltonian with $\mathcal{O}(a, a^2)$ errors
- Truncate to $\Lambda = 10$ in the electric field values
- Trotterization $\mathcal{U}(T)$ with **loose** error bound $\epsilon_{Trotter}$
- **Decomposing** unitary operators into native gates introduces $\epsilon_{synthesis}$
- $\epsilon \equiv \epsilon_{Trotter} + \epsilon_{synthesis} = 10^{-8}$

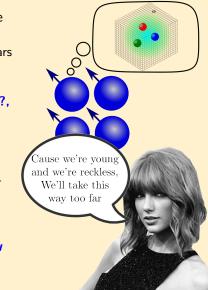
$$O\left(\frac{T^{3/2}d\Lambda L^{d/2}}{\epsilon^{1/2}}\left[d^2L^d\mathcal{K}^2\log(\mathcal{K}) + \log(\Lambda)\log(dL^d)\mathcal{C}\right]\right)$$
(1)

"Our analysis shows 99.998% of the gate counts stem from QFOPs... The SU(3) *heavy-ion collision* problem is then expected to require 9.04×10^{25} QFOPs. This equates to less than **three years** of runtime on an **exa-scale** quantum supercomputer."

[10]

Kan, A. and Y. Nam. In: arXiv preprint arXiv:2107.12769 (2021).

Developing quantum-ready theorists


- Quantum simulations of HEP require a diverse and inclusive quantum-ready workforce with skills beyond traditional HEP.
- Exciting research opportunities exist for as early as high school.
- Portfolio of funding mechanisms, career development opportunities, career paths and mentoring will be required.
- QCIPU exists today. Perhaps QuTASI? Hackathons?

It's time to go

Long-term impact likely larger for HEP than classical computing

- Devices are expected to rapidly scale
 - Theorists should be engaged early
 - Toy models simulations in \lesssim 5 years
- Investigate desirable properties
 - Entanglement in QG? Viscosity?, Cosmology?
- Must improve over **expensive** algorithms
 - e.g. Consider theory errors, tighter bound on trotterization, reduce QFOPs
- Need to develop workforce with new skills

