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Symmetry

• Symmetry has proven, from time and again, to be of fundamental 
importance for describing Nature.
• In recent years, there has been a revolution in our understanding of 

global symmetries.
• The notion of global symmetry has been generalized in different 

directions. 
• These generalized global symmetries are some of the few universally 

applicable tools to analyze general quantum systems, not limited to 
supersymmetric or solvable models. 
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Generalized global symmetries
• These new symmetries lead to several surprising consequences:
• generalized ‘t Hooft anomaly matching conditions
• new implications for the phase diagram of gauge theories
• new organizing principles of topological phases in condensed matter 

physics
• new dualities

• Active collaboration between experts from high energy physics, condensed 
matter physics, quantum gravity, and mathematics. 
• In this talk I’ll discuss only some of these developments. Please see the 

upcoming white paper for more references. I apologize in advance for the 
variety of fascinating papers that are not discussed below.
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Generalizations
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Higher-form symmetries
e.g. center symmetry in gauge theory

Subsystem symmetries
e.g. fractons

Non-invertible symmetries
e.g. Ising model, 4d Maxwell theory, Yang-Mills,…

Many other generalizations of global 
symmetries not discussed here, e.g. dipole 
symmetry, asymptotic symmetry,…
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Noether current
• Consider a relativistic QFT in 𝑑 spacetime dimensions. Suppose it has an 

ordinary 𝑈(1) global symmetry with a 𝑑 − 1 form Noether current 
𝑗("#$)(𝑥) satisfying the conservation equation:

𝑑𝑗("#$) = 0

• The conserved, unitary symmetry operator is an integral over a 
codimension-1 manifold 𝑀 "#$ in spacetime (e.g. the entire space at a 
fixed time)

𝑈&(𝑀 "#$ ) = exp( 𝑖𝜃 1
' !"#

𝑗("#$) )

• Thanks to the conservation equation, the dependence on 𝑀("#$) is 
topological: it is invariant under small deformations.

• It acts on a charged local operator 𝒪(𝑥) by enclosing the latter. 4

𝑀("#$)

𝒪(𝒙)

𝑈3(𝑀 456 )



Ordinary global symmetry

Next, we generalize the ordinary global symmetry by modifying the 
above conditions.
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Properties of 
symmetry op.

Ordinary symmetry
𝑈" 𝑀($%&)

Example: 𝑈(1)

exp(𝑖𝜃 -
(("#$)

𝑗($%&))

Codimension
in spacetime

1 𝑗($%&) is a 𝑑 − 1-form

Topological yes 𝑗($%&) is closed, 𝑑𝑗($%&) = 0

Fusion rule group
𝑈"$𝑈"& = 𝑈"$"&

𝑈(1)
𝑈)$𝑈)& = 𝑈)$*)&



Generalized global symmetries
Properties of 
symmetry op.

Ordinary 
symmetry

Higher-form 
symmetry

Subsystem 
symmetry

Non-invertible 
symmetry

Codimension
in spacetime

1 > 1 > 1 ≥ 1

Topological yes yes not completely
but conserved in time

yes

Fusion rule
group

𝑔&×𝑔+ = 𝑔,
group

𝑔&×𝑔+ = 𝑔,
group

𝑔&×𝑔+ = 𝑔,
fusion ring

𝑎×𝑏 =9
-

𝑁./- 𝑐
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Higher-Form Symmetry



Global symmetries and generalizations
Properties of 
symmetry op.

Ordinary 
symmetry

Higher-form 
symmetry

Subsystem 
symmetry

Non-invertible 
operator

Codimension
in spacetime

1 > 1 > 1 ≥ 1

Topological yes yes not completely
but conserved in time

yes

Fusion rule
group

𝑔&×𝑔+ = 𝑔,
group

𝑔&×𝑔+ = 𝑔,
group

𝑔&×𝑔+ = 𝑔,
fusion ring

𝑎×𝑏 =9
-

𝑁./- 𝑐
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Higher-form global symmetry
[Gaiotto-Kapustin-Seiberg-Willett 2014,…]
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Properties of 
symmetry op.

𝑞-form symmetry
𝑈" 𝑀($%0%&)

Example: 𝑈(1)

exp(𝑖𝜃 -
(("#'#$)

𝑗($%0%&))

Codimension
in spacetime

𝑞 + 1 𝑗($%0%&) is a 𝑑 − 𝑞 − 1-form

Topological yes 𝑗($%0%&) is closed, 
𝑑𝑗($%0%&) = 0

Fusion rule
group

𝑈"$𝑈"& = 𝑈"$"&
𝑈(1)

𝑈)$𝑈)& = 𝑈)$*)&

The charged objects are 𝑞-dimensional.



Higher-form symmetries and anomalies
[Gaiotto-Kapustin-Seiberg-Willett 2014,…]

• The simplest example of higher-form symmetries is the one-form center 
symmetry in gauge theory. E.g. ℤ! center symmetry in 𝑆𝑈 𝑁 Yang-Mills 
theory. It acts on the Wilson lines, rather than the local operators.
• Higher-form global symmetries can have anomalies, which prevent us from 

gauging them. These anomalies lead to generalized ‘t Hooft anomaly 
matching conditions. Nontrivial constraints on renormalization group flows.

• E.g. 𝑆𝑈(2) pure gauge theory at 𝜃 = 𝜋 has a mixed anomaly between 𝐶𝑃
and the ℤ" one-form center symmetry. The low energy phase cannot be 
trivially gapped with a non-degenerate ground state. (Contrast with the 
expectation at  𝜃 = 0.) [Gaiotto-Kapustin-Komargodski-Seiberg 2017]
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Higher-groups

• Higher-group symmetry: mixture of higher-form symmetries of 
different degrees [Kapustin-Thorngren 2013, Tachikawa 2017, Cordova-Dumitrescu-
Intriligator 2018-2020, Benini-Cordova-Hsin 2018,…]. 
• Similar to group extensions, but for symmetries of different form 

degrees.
• Higher-groups exist in many quantum systems in diverse dimensions: 

2+1d Chern-Simons matter theories, 3+1d gauge theories, 5+1d 
supersymmetric theories…
• Dynamical consequences. E.g. Constraints on the 3+1d axion-Yang-

Mills theory [Hidaka-Nitta-Yokokura 2020-2021, Brennan-Cordova 2020]. 

11



Subsystem Symmetry 



Generalized global symmetries
Properties of 
symmetry op.

Ordinary 
symmetry

Higher-form 
symmetry

Subsystem 
symmetry

Non-invertible 
symmetry

Codimension
in spacetime

1 > 1 > 1 ≥ 1

Topological yes yes not completely
but conserved in time

yes

Fusion rule
group

𝑔&×𝑔+ = 𝑔,
group

𝑔&×𝑔+ = 𝑔,
group

𝑔&×𝑔+ = 𝑔,
fusion ring

𝑎×𝑏 =9
-

𝑁./- 𝑐
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Subsystem symmetry
• There are many interesting lattice models, such as 

fractons, exhibiting subsystem symmetries.
• The subsystem symmetry charges are supported on certain 

higher-codimensional manifolds 𝐿 in space (E.g. straight lines 
on a plane) […, Paramekanti-Balent-Fisher 2002, …]. They depend NOT 
only on the topology of the manifolds.

• The number of subsystem symmetry charges generally 
depends on the number of lattice points. 

• Low energy observables are sensitive to short distance 
details: UV/IR mixing [Gorantla-Lam-Seiberg-SHS 2021].
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Fractons
• Fractons [Chamon 2005, Haah 2011, …] are a large class of 3+1d gapped lattice spin 

models with many peculiar features. 
• They do not admit a conventional continuum field theory limit. Challenge the 

canonical paradigm that QFT describes low energy phases.
• Large ground state degeneracy ~ 2#4, where 𝐿 is the number of lattice sites in 

every direction. 
• The peculiarities of fractons can be universally captured by the underlying 

subsystem symmetries. For example, the large ground state degeneracy is a direct 
consequence of the anomalies of the subsystem symmetries [Seiberg-SHS 2020, Burnell-
Devakul-Gorantla-Lam-SHS 2021].
• Many fracton models can also be realized as the gauge theory of subsystem 

symmetries [Vijay-Haah-Fu 2016, Williamson 2016, Slagle-Kim 2017, Shirley-Slagle-Chen 2018,…]
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Non-invertible Symmetries



Generalized global symmetries
Properties of 
symmetry op.

Ordinary 
symmetry

Higher-form 
symmetry

Subsystem 
symmetry

Non-invertible 
symmetry

Codimension
in spacetime

1 > 1 > 1 ≥ 1

Topological yes yes not completely
but conserved in time

yes

Fusion rule
group

𝑔&×𝑔+ = 𝑔,
group

𝑔&×𝑔+ = 𝑔,
group

𝑔&×𝑔+ = 𝑔,
fusion ring

𝑎×𝑏 =9
-

𝑁./- 𝑐
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Wilson lines for finite gauge groups

• Consider a QFT with a finite gauge group 𝐺 (e.g. ℤ8 , 𝑆8 , etc.). 

• The topological Wilson lines 𝑊9 are labeled by the irreducible 
representations 𝑅 of 𝐺.
• The fusion of the Wilson lines is generally NOT a group! (E.g. the 

representation ring of 𝑆:: 2 ⊗ 2 = 1⊕ 15⊕2)

𝑊9!×𝑊9" = 3
;∈=>>?@A

𝑁BC; 𝑊9#

• Do these Wilson lines generate a global symmetry? 
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More than one 
term on RHS



Non-invertible symmetries

• More generally, a topological operator 𝐿 is called non-invertible if there is 
no inverse 𝐿#$ such that 𝐿×𝐿#$ = 1.
• It has been advocated that the non-invertible topological operators should 

be viewed as generalizations of ordinary global symmetries [Bhardwaj-Tachikawa
2017, Chang-Lin-SHS-Wang-Yin 2018,…].
• Non-invertible symmetries in many familiar systems:
• 1+1d Ising model [Frohlich-Fuchs-Runkel-Schweigert 2006,…]

• 3+1d gauge theories (Maxwell, Yang-Mills, 𝒩 = 4 super Yang-Mills) 
[Choi-Cordova-Hsin-Lam-SHS 2021, Kaidi-Ohmori-Zheng 2021]

• 3+1d ℤ! lattice gauge theories [Koide-Nagoya-Yamaguchi 2021]
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Non-invertible symmetries

Why should we think of the non-invertible topological operators as 
generalized symmetries?  
• Some non-invertible operators can be gauged [Brunner-Carqueville-Plencner

2014].

• They can have generalized anomalies, which lead to generalized ‘t 
Hooft anomaly matching conditions.  They result in nontrivial 
constraints on the renormalization group flows [Chang-Lin-SHS-Wang-Yin 2018, 
Thorngren-Wang 2019, 2021, Komargodski-Ohmori-Roumpedakis-Seifnashri 2020, …]. 
• Analytic obstruction to a trivially confining phase in 3+1d gauge 

theories [Choi-Cordova-Hsin-Lam-SHS 2021].
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Conclusion
• We have discussed three generalizations of global symmetries, higher form 

symmetries, subsystem symmetries, and non-invertible symmetries. Many 
other generalizations.
• This more general perspective of global symmetry unifies many known 

phenomena into a coherent framework.
• Generalized global symmetries and their anomalies provide an invariant 

characterization of many topological phases of matter such as fractons.
• More importantly, they lead to new dynamical consequences that are 

otherwise obscured.
• Generalizations of the ‘t Hooft anomaly matching condition lead to nontrivial 

constraints on renormalization group flows.
• New symmetries in new and old QFTs!
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Generalized global symmetries
Properties of 
symmetry op.

Ordinary 
symmetry

Higher-form 
symmetry

Subsystem 
symmetry

Non-invertible 
symmetry

Codimension
in spacetime

1 > 1 > 1 ≥ 1

Topological yes yes not completely
but conserved in time

yes

Fusion rule
group

𝑔&×𝑔+ = 𝑔,
group

𝑔&×𝑔+ = 𝑔,
group

𝑔&×𝑔+ = 𝑔,
fusion ring

𝑎×𝑏 =9
-

𝑁./- 𝑐
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Thank you for listening!


