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FIG. 1. Unitarity cuts needed for the classical scattering am-
plitude. The shaded ovals represent tree amplitudes while the
exposed lines depict on-shell states. The wiggly and straight
lines denote gravitons and massive scalars, respectively.

explicitly the completeness of our second method, where
we work in strictly D = 4 so as to benefit from very
simple expressions for gauge-theory amplitudes in terms
of spinor helicity [19] variables. We then build the two
corresponding gravitational amplitudes via the KLT re-
lations [16]. At two loops, both approaches are efficient,
but at higher loops, helicity amplitudes offer a much more
compact starting point.
For concreteness, consider the first generalized unitar-

ity cut in Fig. 1, which we refer to as CH-cut and is com-
prised of products of four three-point and one four-point
amplitudes. Since four-point tree amplitudes are already
very simple there is little computational advantage to
imposing the on-shell conditions on matter lines. Thus,
we replace the pairs of three-point amplitudes at the top
and bottom of the cut with four-point amplitudes and
then impose the matter cut conditions at the end. The
resulting iterated two-particle cut is then

C2,2 =
∑

states

M4(2
s,−8, 7, 3s)M4(−5, 6,−7, 8)

×M4(1
s, 5,−6, 4s), (1)

where M4 denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1s, 2s, 3s, 4s. In this cut, legs 1s, 4s have
mass m1 while legs 2s, 3s have mass m2. All momenta in
each tree amplitude are taken to be outgoing. The sum
runs over graviton states for legs 5, 6, 7, 8, where the
minus signs on the labels indicate reversed momenta.
The four-point gravity tree amplitudes needed in the

cuts are obtained from gauge-theory ones via the field-
theory limit of KLT relations [16],

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2)

where the A4 are tree-level color-ordered gauge-theory
four-point amplitudes and sij = (pi + pj)2, working
in mostly minus metric signature throughout. Strictly
speaking, the KLT relations apply only to massless
states. However, they can be applied here by interpreting
the scalar masses, in the sense of dimensional reduction,
as extra-dimensional momentum components. While we
have not included coupling constants, these are easily
restored at the end of the calculation by including an
overall factor of (8πG)3, where G is Newton’s constant.
In terms of the spinor-helicity conventions of Ref. [20],

the independent tree-level gauge-theory amplitudes

needed in Eq. (1) are

A4(1
s, 2+, 3+, 4s) = i

m2
1 [2 3]

〈2 3〉 t12
,

A4(1
s, 2+, 3−, 4s) = i

〈3| 1 |2]2

t23 t12
,

A4(1
−, 2−, 3+, 4+) = i

〈1 2〉4

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 ,

A4(1
−, 2+, 3−, 4+) = i

〈1 3〉4

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 , (3)

where tij = 2pi · pj and the ± denote gluon helicities.
The dilaton and antisymmetric tensor states are re-

moved from unitarity cuts by correlating the gluon helic-
ities on both sides of the double copy. The unwanted
states correspond to one gluon in the double copy of
positive helicity and the other of negative helicity. An
internal graviton state is obtained by taking the corre-
sponding gluons in the KLT formula in Eq. (2) to be of
the same helicity.
Using spinor evaluation techniques, it is straightfor-

ward to obtain a compact expression for the iterated two-
particle cut in Eq. (1) (e.g. see Ref. [25]). Imposing cuts
on the matter lines, as indicated in the first unitarity cut
of Fig. 1, further simplifies it and gives CH-cut. We find

CH-cut = 2i

[
1

(p5 − p8)2
+

1

(p5 + p7)2

]

×
[
s223m

4
1m

4
2 +

1

s623

∑

i=1,2

(
E4
i +O4

i + 6O2
i E2

i

)]
, (4)

where we have defined

E2
1 =

1

4
s223(t18t25 − t12t58)

2, O2
1 = E2

1 −m2
1m

2
2s

2
23t

2
58,

E2
2 =

1

4
s223(t17t25 − t12t57 − s23(t17 + t57))

2,

O2
2 = E2

2 −m2
1m

2
2s

2
23t

2
57. (5)

The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear
in the simpler corresponding gauge-theory cut.
The spurious double-pole in s23 can be explicitly can-

celled by adding terms proportional to the Gram determi-
nant formed from the five independent momenta at two
loops which vanishes inD = 4. In fact, the expression de-
rived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form
to generate the required log(s23) needed to contribute to
the classical 3PM amplitude (see Ref. [24] for details).
The remaining two independent generalized unitarity

cuts in Fig. 2 are more complicated because they re-
quire five-point tree amplitudes with two massive scalar
legs. The four-dimensional input gauge-theory ampli-
tudes are simple to compute using modern methods

M
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Theoretical Structures
(virtuous cycle)



Produce state-of-the-art waveforms 
for compact binary coalescence.

Develop tools from theoretical high energy 
physics for application to gravitational waves.

Explore theoretical structures that emerge in 
the classical regime of scattering amplitudes.

Quantum field theory tools 
for gravitational wave science
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High-energy gravitational scattering and the general relativistic two-body problem

Thibault Damour⇤

Institut des Hautes Etudes Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, France

(Dated: October 31, 2017)

A technique for translating the classical scattering function of two gravitationally interacting bod-
ies into a corresponding (e↵ective one-body) Hamiltonian description has been recently introduced
[Phys. Rev. D 94, 104015 (2016)]. Using this technique, we derive, for the first time, to second-order
in Newton’s constant (i.e. one classical loop) the Hamiltonian of two point masses having an arbi-
trary (possibly relativistic) relative velocity. The resulting (second post-Minkowskian) Hamiltonian
is found to have a tame high-energy structure which we relate both to gravitational self-force stud-
ies of large mass-ratio binary systems, and to the ultra high-energy quantum scattering results of
Amati, Ciafaloni and Veneziano. We derive several consequences of our second post-Minkowskian
Hamiltonian: (i) the need to use special phase-space gauges to get a tame high-energy limit; and
(ii) predictions about a (rest-mass independent) linear Regge trajectory behavior of high-angular-
momenta, high-energy circular orbits. Ways of testing these predictions by dedicated numerical
simulations are indicated. We finally indicate a way to connect our classical results to the quan-
tum gravitational scattering amplitude of two particles, and we urge amplitude experts to use their
novel techniques to compute the 2-loop scattering amplitude of scalar masses, from which one could
deduce the third post-Minkowskian e↵ective one-body Hamiltonian

I. INTRODUCTION

The recent observation [1–4] of gravitational wave sig-
nals from inspiralling and coalescing binary black holes
has been significantly helped, from the theoretical side,
by the availability of a large bank of waveform templates,
defined [5, 6] within the analytical e↵ective one-body
(EOB) formalism [7–11]. The EOB formalism combines,
in a suitably resummed format, perturbative, analytical
results on the motion and radiation of compact binaries,
with some non-perturbative information extracted from
numerical simulations of coalescing black-hole binaries
(see [12] for a review of perturbative results on binary
systems, and [13] for a review of the numerical relativity
of binary black holes). Until recently, the perturbative re-
sults used to define the EOB conservative dynamics were
mostly based on the post-Newtonian (PN) approach to
the general relativistic two-body interaction. The con-
servative two-body dynamics was derived, successively,
at the second post-Newtonian (2PN) [14, 15], third post-
Newtonian (3PN) [16], and fourth post-Newtonian (4PN)
[17] levels (with a crucial 4PN contribution having been
derived by black-hole perturbation theory [18]). For
more references on the derivation (and rederivations) of
the PN-expanded dynamics, and for recent progress, see,
[12, 19, 20].

Anticipating on the needs of the upcoming era of high
signal-to-noise-ratio gravitational-wave observations, it is
important to construct theoretically improved versions
of the two-body conservative dynamics. [Here, we con-
sider non-spinning two-body systems of masses m1, m2.]
With this aim in mind, a novel theoretical approach to
the derivation of the general relativistic two-body inter-

⇤Electronic address: damour@ihes.fr

action (and of its EOB formulation) was recently intro-
duced [21]. The basic idea of Ref. [21] was to derive
improved versions of the two-body dynamics from the
(gauge-invariant) scattering function � linking (half) the
center of mass (c.m.) classical gravitational scattering
angle � to the total energy, Ereal ⌘

p
s, and the total

angular momentum, J , of the system1

1

2
� = �(Ereal, J ;m1,m2, G) . (1.1)

The (dimensionless) scattering function can be expressed
as a function of dimensionless ratios, say

1

2
� = �(h, j; ⌫) , (1.2)

where we denoted

h ⌘
Ereal

M
; j ⌘

J

Gm1m2
=

J

GµM
, (1.3)

with

M ⌘ m1 +m2; µ ⌘
m1m2

m1 +m2
; ⌫ ⌘

µ

M
=

m1m2

(m1 +m2)2
.

(1.4)
As 1/j = Gm1m2/J , the perturbative expansion of the
(classical) scattering function in powers of the gravita-
tional constant G [post-Minkowskian (PM) expansion,
which, contrary to the PN one does not assume slow ve-
locities] is seen to be equivalent to an expansion in inverse
powers of the angular momentum:

1

2
�class(Ereal, J) =

1

j
�1(h, ⌫)+

1

j2
�2(h, ⌫)+

1

j3
�3(h, ⌫)+· · ·

(1.5)

1 We add a subscript “real” to the total energy to avoid confusion
with our later use of a corresponding “e↵ective energy”. We
generally use units such that c = 1, keeping, however, track of
the factors G ⌘ GNewton and ~.
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“… we urge amplitude experts to use their novel techniques to compute 
the 2-loop scattering amplitude of scalar masses …”

Welcomed by the general relativity community.
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Theorists at LIGO are interested.
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Figure 1: The binding energy (in units of the total mass) of two equal mass black holes
as they orbit about each other towards eventual merger. This plot is adapted from [9, 10],
where theorists within LIGO compared Solon’s predictions obtained using QFT tools (solid
lines; of increasing accuracy in Newton’s constant G) with numerical relativity and EOB,
the benchmarks for building waveforms for LIGO/Virgo. The O(G4) prediction is the solid
orange curve, and the dashed lines surrounding it are variations from toggling different
contributions to it [10].

objectives:

• Provide precise predictions for compact binaries, including higher-order corrections to
classical dynamics from gravitational radiation, spin effects, and tidal deformation.
These analytic results will complement results from numerical relativity, and the com-
bination of both will produce state-of-the-art gravitational waveforms.

• Develop modern tools from theoretical high energy physics for application to gravita-
tional waves, including generalized unitarity, double-copy relations between gauge and
gravity theories, and advanced multiloop integration.

• Identify theoretical structures that emerge in the classical regime of scattering ampli-
tudes and develop them into active tools for efficient computation; examples include the
universality of high-energy scattering, nonperturbative relations to classical solutions,
and perturbation theory in curved backgrounds.

3 Impact

Solon, together with a fantastic team of collaborators, has been developing several aspects
of this approach to binary dynamics [1, 2, 3, 4, 5, 6, 7, 8], culminating in the derivation

2

Cheung, Rothstein,

MS  2018

Bern, Cheung, Roiban, 

Shen, MS, Zeng  2019

Bern, Parra-Martinez, Roiban, 

Ruf, Shen, MS, Zeng  2021

Antonelli, Buonanno, Steinhoff, van de Meent, Vines  2019; +Khalil in prep
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Figure 2: The scattering angle (in degrees) as a function of the impact parameter (in units
of the total mass) in a hyperbolic encounter between two equal mass black holes. This plot
is adapted from [10], where theorists within LIGO compared Solon’s predictions obtained
using QFT tools (solid lines; of increasing accuracy in Newton’s constant G) with numerical
relativity.

of new results in general relativity that are directly relevant to gravitational wave signals.
This caught the attention of theorists within the LIGO collaboration [9, 10] who found
that these early results are already competitive with benchmarks from numerical relativity
and the Effective One Body (EOB) model; see Figures 1 and 2. They strongly encouraged
further developments since the approach can provide analytic results that are more precise
and efficient than numerical relativity in important parameter regions. The work has also
lead to new insights into theoretical structures connecting scattering amplitudes and classical
dynamics, and has thus drawn significant interest from both the high energy physics and
general relativity communities. Many of the results have now been confirmed in multiple
studies (e.g. [11, 12, 13, 14, 15, 16, 17, 18, 19]).

The key papers [1, 2, 3] now have a total of over 600 citations, and the work was high-
lighted as a new direction in theoretical high energy physics in JoAnne Hewitt’s overview
talk “The Exciting Physics Before US!” at the Snowmass Community Planning Meeting. In
the past three years, Solon received over 35 invitations to present this work at university
seminars, workshops, and plenary talks at conferences [119]–[156]. This includes the Snow-
mass meeting at KITP in February 2022, a plenary talk at the APS meeting in April 2022,
and international conferences such as RADCOR, Amplitudes, the Marcel Grossman Meet-
ing, and the inaugural symposium of the European Consortium for Astroparticle Theory at
CERN. Solon was also invited to give summer school lectures at Amplitudes 2020, and have
organized conferences at Northwestern, UCLA, and KITP.

More broadly, Solon’s work on applying EFT techniques to various topics such as dark

3
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FIG. 1. Unitarity cuts needed for the classical scattering am-
plitude. The shaded ovals represent tree amplitudes while the
exposed lines depict on-shell states. The wiggly and straight
lines denote gravitons and massive scalars, respectively.

explicitly the completeness of our second method, where
we work in strictly D = 4 so as to benefit from very
simple expressions for gauge-theory amplitudes in terms
of spinor helicity [19] variables. We then build the two
corresponding gravitational amplitudes via the KLT re-
lations [16]. At two loops, both approaches are efficient,
but at higher loops, helicity amplitudes offer a much more
compact starting point.
For concreteness, consider the first generalized unitar-

ity cut in Fig. 1, which we refer to as CH-cut and is com-
prised of products of four three-point and one four-point
amplitudes. Since four-point tree amplitudes are already
very simple there is little computational advantage to
imposing the on-shell conditions on matter lines. Thus,
we replace the pairs of three-point amplitudes at the top
and bottom of the cut with four-point amplitudes and
then impose the matter cut conditions at the end. The
resulting iterated two-particle cut is then

C2,2 =
∑

states

M4(2
s,−8, 7, 3s)M4(−5, 6,−7, 8)

×M4(1
s, 5,−6, 4s), (1)

where M4 denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1s, 2s, 3s, 4s. In this cut, legs 1s, 4s have
mass m1 while legs 2s, 3s have mass m2. All momenta in
each tree amplitude are taken to be outgoing. The sum
runs over graviton states for legs 5, 6, 7, 8, where the
minus signs on the labels indicate reversed momenta.
The four-point gravity tree amplitudes needed in the

cuts are obtained from gauge-theory ones via the field-
theory limit of KLT relations [16],

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2)

where the A4 are tree-level color-ordered gauge-theory
four-point amplitudes and sij = (pi + pj)2, working
in mostly minus metric signature throughout. Strictly
speaking, the KLT relations apply only to massless
states. However, they can be applied here by interpreting
the scalar masses, in the sense of dimensional reduction,
as extra-dimensional momentum components. While we
have not included coupling constants, these are easily
restored at the end of the calculation by including an
overall factor of (8πG)3, where G is Newton’s constant.
In terms of the spinor-helicity conventions of Ref. [20],

the independent tree-level gauge-theory amplitudes

needed in Eq. (1) are

A4(1
s, 2+, 3+, 4s) = i

m2
1 [2 3]

〈2 3〉 t12
,

A4(1
s, 2+, 3−, 4s) = i

〈3| 1 |2]2

t23 t12
,

A4(1
−, 2−, 3+, 4+) = i

〈1 2〉4

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 ,

A4(1
−, 2+, 3−, 4+) = i

〈1 3〉4

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 , (3)

where tij = 2pi · pj and the ± denote gluon helicities.
The dilaton and antisymmetric tensor states are re-

moved from unitarity cuts by correlating the gluon helic-
ities on both sides of the double copy. The unwanted
states correspond to one gluon in the double copy of
positive helicity and the other of negative helicity. An
internal graviton state is obtained by taking the corre-
sponding gluons in the KLT formula in Eq. (2) to be of
the same helicity.
Using spinor evaluation techniques, it is straightfor-

ward to obtain a compact expression for the iterated two-
particle cut in Eq. (1) (e.g. see Ref. [25]). Imposing cuts
on the matter lines, as indicated in the first unitarity cut
of Fig. 1, further simplifies it and gives CH-cut. We find

CH-cut = 2i

[
1

(p5 − p8)2
+

1

(p5 + p7)2

]

×
[
s223m

4
1m

4
2 +

1

s623

∑

i=1,2

(
E4
i +O4

i + 6O2
i E2

i

)]
, (4)

where we have defined

E2
1 =

1

4
s223(t18t25 − t12t58)

2, O2
1 = E2

1 −m2
1m

2
2s

2
23t

2
58,

E2
2 =

1

4
s223(t17t25 − t12t57 − s23(t17 + t57))

2,

O2
2 = E2

2 −m2
1m

2
2s

2
23t

2
57. (5)

The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear
in the simpler corresponding gauge-theory cut.
The spurious double-pole in s23 can be explicitly can-

celled by adding terms proportional to the Gram determi-
nant formed from the five independent momenta at two
loops which vanishes inD = 4. In fact, the expression de-
rived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form
to generate the required log(s23) needed to contribute to
the classical 3PM amplitude (see Ref. [24] for details).
The remaining two independent generalized unitarity

cuts in Fig. 2 are more complicated because they re-
quire five-point tree amplitudes with two massive scalar
legs. The four-dimensional input gauge-theory ampli-
tudes are simple to compute using modern methods

M
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Figure 5: Classical binary dynamics is encoded in scattering amplitudes of massive particles
(thick lines) interacting through gravitons (wavy lines): (A) four-point scattering encodes
higher-order corrections to conservative binary dynamics, (B) five-point scattering encodes
radiative effects due to graviton emission, and (C) higher-dimensional operators (solid circle)
encode tidal deformation of neutron stars [5]. Spinning compact objects can be described
by higher spin representations in QFT.
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Here (E, p) denotes the scalings of the energy and three-momentum of the modes, m is the
mass of the binary constituents, v is the relative velocity, and J is the angular momentum.

The classical limit of scattering amplitudes is defined by two properties that distinguish
compact binaries from their quantum counterparts:

• Bound compact objects have large angular momentum J ! !, as opposed to J ∼ ! ≡ 1
for quantum bound states.

• Compact objects, such as black holes or neutron stars, have large gravitational charges
M!/MPlanck ∼ 1038, as opposed to e/QPlanck ∼ 10−1 for electric charges of elementary
particles. Here M! and e denote the solar mass and electron charge, while MPlanck and
QPlanck are the Planck mass and charge, respectively.

The expansion in large angular momentum corresponds to scattering amplitudes involving
the exchange of soft modes, or of potential and radiation modes. Importantly, the expan-
sion is taken at the earliest stages of the calculation, yielding vast simplifications prior to
integration.

EFT tools enable power-counting and factorization, which lead to efficient extraction
of the classical contributions from the modes described above. In particular, contributions
from potential and radiation modes can be systematically and separately considered, and, as
illustrated in Figure 4, resummed to all orders in the velocity v using differential equations.

4.3 Amplitude-Action Relation

Another important role of EFT is to connect scattering amplitudes and classical binary dy-
namics (step [d] to [e] in Figure 3). This is done through a matching calculation between
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Figure 7: Sample “fan-type” diagrams, where massive particles and gravitons are denoted
by thick and thin lines, respectively. The resummation of these to all orders in G yields the
amplitude in Equation (5.3)

M(r) and the local center-of-mass momentum in a hyperbolic orbit,

M(r) =
p(r)2 − p(∞)2

2E
. (5.2)

Here p(r)2 is the squared center-of-mass momentum at position r, and E is the total center-
of-mass energy. This relation can be used to derive amplitudes to all orders in G. For
instance, the diagrams in Figure 7 describe a probe particle orbiting in a Schwarzschild
background, and can be resummed by determining p(r) from geodesic motion. This yields

M =
1

2E

[
m2(1− (1 + ρ)4)− E2

(
1− (1 + ρ)6

(1− ρ)6

)]
, (5.3)

where m and E =
√

p2 +m2 are the mass and energy of the probe particle, and ρ = Rs/r is
the ratio of the Schwarzschild radius Rs and the distance between the two bodies r. Solon
has also derived nonperturbative amplitudes involving higher-dimensional operators that
describe tidal effects [6].

It would be interesting to understand these nonperturbative results using QFT methods.
Does the amplitude in Equation (5.3) obey a differential equation or recursion relation?
Moreover, there is the possibility of using Equation (5.3) as an effective “Schwarzschild
vertex”, which can be inserted in diagrams to capture a class of contributions to all orders.

Solon’s agenda for exploring nonperturbative structure also includes: extending the
amplitude-action relation to include spin and radiation; deriving the amplitude for a spin-
ning probe particle orbiting a Kerr black hole to all orders; exploring connections between
scattering amplitudes and the physics of black hole quasinormal modes. It would also be
interesting to explore the amplitude-action relation and its quantum corrections in QED and
QCD.

Gravitational Self-Force. The space-based gravitational wave detector LISA will observe
extreme-mass-ratio inspirals, which are binary systems consisting of a compact body of
mass m1 and a supermassive black hole of mass m2, with m2 # m1. The limiting case
is described by a probe particle orbiting in a background spacetime such as Schwarzschild
or Kerr. Beyond this, the particle interacts with its own gravitational field, giving rise to
an effective “self-force”, which is computed as an expansion in m1/m2 but to all orders in
G. The first-order self-force correction has been known since the late 90’s; however, the
precision of LISA will require the second-order self-force correction, which is unsolved even
numerically. Early results were only recently obtained [117].

Interestingly, the new QFT-based approach has revealed a connection between pertur-
bative corrections to binary dynamics and self-force corrections. The mass dependence of
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An open field with lots to explore.
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