

1. Why is the corona hot?

2. Why is the corona structured?

3. Why is the corona dynamic & unstable?

 \rightarrow Emergence of **B** into the atmosphere, and response to **B**.

Outline of Talk

1. Coronal Heating: The New View From TRACE

2. Coronal Structure: Relation of **B** to X-ray Corona

3. Flares: What TRACE Has Added

- 4. CMEs
- 5. What Next?

- a) Pure evaporative cooling $\epsilon(t) = 0$, and
- b) Constant heating, $\epsilon(t) = const.$

Pure cooling:

$$\Upsilon \approx N_1^2 L_1 \left(\frac{T_I}{T_M}\right)^{5/2} \frac{(1+t/\tau_c)^{5/7}}{\sqrt{1-(\psi_M \theta)^{-3/2}}}.$$
 (3)

During the time when TRACE sees footpoint emission only, evaporative cooling would produce emission with an almost linear temporal variation,

$$\Upsilon = \Upsilon_1 \; (1+t/\tau_c)^{5/7}.$$

Constant heating:

 $\text{Time dependence of temperature } \boldsymbol{\theta}(t) \text{ is: } \boldsymbol{\theta}(t) = e^{t/\tau_{*}} (1 + (C\tau_{*}/\tau_{1}) \left(e^{7t/2\tau_{*}} - 1\right))^{-2/7},$

TRACE emission measure is roughly quadratic with time:

 $\Upsilon = \Upsilon_1 (1 + t/\tau_e)^2.$

From Photosphere to Corona

1. Choose target of interest.

2. Surface **B** from FPIP.

3. Photospheric and chromospheric structure at high spatial and temporal resolution (FPIP/EIS).

4. Chromosphere-TR-corona topology and dynamics (EIS/XRT).

5. Coronal structure and dynamics (XRT).

Solar-B Flare Obs

Solar-B is launched near minimum of cycle.

Flare observations require difficult coordinated observations: FPP for **B**, EIS for T, XRT for geometry and context.

Recommendation: Do not attempt flare program at start of mission. (But be prepared to deal with flares when they occur.)

XRT Observing Wish List

Question: What observations would you forever regret not having done?

(Note: We ignore for a moment whether or not there practical difficulties in doing these observing programs.)

One full Solar rotation:

1. Full Sun, full resolution.

2. Cadence at least twice per orbit.

3. Two or more filters for analysis.

One day of high time resolution, large-field coronal observation.

1. Image cadence at least every 20 seconds.

2. F.O.V. at least 512x512 arcsec, centered on chosen target.

3. At least two analysis filters, for disk passage.

Evolution of Eruptions

1. Where do eruptive structures (e.g. sigmoids) come from?

2. Follow evolution of several ARs for entire disk passage at moderate cadence with XRT, using at least three analysis filters.

3. Map vector **B** in and around the region.

3a. Map multi-thermal TR and corona in and around the region.

Eruptions - Observing Program

1. Requires *at least* 16X16 arcmin box, in at least two analysis filters.

2. Requires several months observation at 2/day cadence full Sun, plus at least twice per orbit on target region for several days.

3. Will have to be done many times throughout mission - recommend at least twice during first 3 months of observations.

Req	uirements	s Flowdov	wn
Primary Requirements	Definition	Value	Primary Hardware
Exposure Time	Shutter open/close	4ms (min) 10 sec (max)	Shutter, Filters, GI mirror effective area
Cadence	Time between exp.	2 sec	Shutter, Filter wheels
Temp. Range	Temp. range	6.1 < log T < 7.5	GI Coatings, Filters
Temp. Resolution	Temp. discrimination	Log T = 0.2	Filter selection
Image Resolution	50% encircled energy	2" at 0.5 keV on axis	GI Mirror Prescription
Field of View	Angular coverage	>30 arcmin	GI Mirror Prescription
GI to VLI alignment	Align X-ray to WL images	10 arcsec	Mirror Assembly
GI to [EIS,SOT] alignment	Align XRT to other instruments	1 arcmin	XRT structure
Derived Requirements			
Visible Light Rejection	Reduction of solar visible light at focal plane	>10**11	Prefilters, FP filters, structures
	visible light at focal plane		structures

What Next?

RAM: A Solar Microscopy Mission (Reconnection And Microscale Probe)

Science Objectives

- Understand the dynamics of solar & astrophysical plasmas – image the structures of unstable plasma configurations
 - image the onset & evolution of plasma instabilities
- Understand the energetics of magnetically heated plasmas
- Understand the fine-scale structure of astrophysical objects from planets to quasars.

RAM uses the Sun, solar system objects and galactic X-ray sources as laboratories for testing and extending our knowledge of astrophysical plasmas.

Onset of Large Scale Instabilities

- Emerging Flux Region
 - twisting/untwisting
 - reconnection
- delta Spots
 - current sheets
 - topology changes
- Active Filaments
 - Te, ne
 - local heating

	Relative Throughput			
Item	TRACE (195A)	HIRES (5 (193A)	
Geometric Area (cm ²)	: 162	3,85	0	
Reflectivity (2 bounces)) 0.12	0.25		
CCD QE	0.08	0.8		
Throughput				
Ratio (HIRES/TRACE		480		
Pixel Size	0.5"	0.02"	0.01"	
Pixel Area ratio:	1	1.6 x 10 ⁻³	4 x10 ⁻⁴	

Instrui	ment Sensi Expo	UNITY I . SURE TIME	Y II IMES		
Item	TRACE (195A)	HIRES (193A)			
		(0.02")	(0.01")		
Worst Case: (no substructure)	10sec	10 sec	40 sec		
Best Case: (all flux in one pixel)	10sec	0.005 sec	0.02 sec		
Nominal Case: (flux "thread")	10sec	0.5 sec	1 sec		

	High-Resolution Imager	Context Imager
Mirror Diameter	0.75m	0.3m
Eff. Focal Length	240m	5m
Pixel Size	0.01"	0.25"
CCD Format	6k x 8k	4k x 4k
F.O.V	60"x80"	16' x 16'

	HIRES Requirements	Commercial Goals
Figure error	<0.4 nm rms	0.25 nm rms
Mid-frequency Error	<0.5 nm rms	0.2 nm rms
Aicroroughness	<0.3 nm rms	0.1 nm rms

	~		
Missi	Mission Summary		
	Current Baseline		
Class	ST Probe		
Orbit:	L1		
Mission Duration	3 year/5 year		
Launch Date	>2007		
Data Downlink	>1500 images/day		
Launch Vehicle	Delta-III medium		
Ground Station	continuous		
Instrument			
Complement	HRI/CT/SoCCS/XRB		

Mass (S/C):	446 kg (with reserve)
Mass (total):	1452 kg
Mass Margin:	23%
Power:	1410 watt EOL
Power Margin:	24.2%
Telemetry:	50Mbps (X-band)
On-board Storage:	40 Gbyte
Attitude:	3-axis stabilized
Stability:	20", 3-σ, t<100s

Instrument	Resolution	F.O.V	Wavelength Coverage
NIXT	0.6"	full Sun	one line
УОНКОН	2.5"	full Sun	filters
SoHO	2.5"	full Sun	four lines
TRACE	0.5"	8.5'	three lines
Solar-B	1.0"	full Sun	Filters
Solar Probe	0.03"*	30"*	one line
HIREX	0.01,0.25	40", 16'	One line

Full Sun or AR-belt X-ray obs, high cadence for extended time period.

Ground-based full Sun coordinated obs.

Q: How do we target FPIP and EIS to the regions of interest?

Solar-B Flare Obs

Solar-B is launched near minimum of cycle.

Flare observations require difficult coordinated observations.

Recommendation: Do not attempt flare program at start of mission. (But be prepared to deal with flares when they occur.)

XRT Observing Wish List

Question: What observations would you forever regret not having done?

(Note: We ignore for a moment whether or not there practical difficulties in doing these observing programs.)

Full Corona Survey

One full Solar rotation:

1. Full Sun, full resolution.

2. Cadence at least twice per orbit.

3. Two or more filters for analysis.

Coronal dynamics survey

One day of high time resolution, large-field coronal observation.

1. Image cadence at least every 20 seconds.

2. F.O.V. at least 512x512 arcsec, centered on chosen target.

3. At least two analysis filters, for disk passage.

Evolution of Eruptions

1. Where do eruptive structures (e.g. sigmoids) come from?

2. Follow evolution of several ARs for entire disk passage at moderate cadence with XRT, using at least three analysis filters.

3. Map vector **B** in and around the region.

3a. Map multi-thermal TR and corona in and around the region.

Eruptions - Observing Program

1. Requires *at least* 16X16 arcmin box, in at least two analysis filters.

2. Requires several months observation at 2/day cadence full Sun, plus at least twice per orbit on target region for several days.

3. Will have to be done many times throughout mission - recommend at least twice during first 3 months of observations.