The Sun (and Moon) from **Big Bear**

Philip R. Goode Big Bear Solar Observatory New Jersey Institute of Technology

BBSO/NJIT Group

- NJIT Solar Physics Profs
 BBSO PhD Researchers
 - Carsten Denker
 - Dale Gary
 - Phil Goode
 - -Haimin Wang

- Enric Palle Bago
- Leonid Didkovsky
- Haisheng Ji
- Pilar Rodriguez
- John Varsik
- Martin Woodard
- Vasyl Yurchyshyn

2 27 Meter Dishes in the Owens Valley Solar Array (OVSA)

Unique in the World
Array Includes
3 (soon to be 5) 2
meter dishes
Frequency Agile
Multiple Baselines

Big Bear Solar Observatory

BBSO White Light Image of Sun 8/20/1999

Sun's Temperature:

- Center: 15,000,000 K
- **Surface: 4,000 K**
- Corona: 5,000,000 K Energy Source:
- Nuclear Fusion
- **Energy Transport:**
- **Radiative to 0.7 R & >1.0 R**
- Convective 0.7-1.0 R Sun's Rotation:
- 25 days at equator and 35 days near poles

The Sun's Differential Rotation

- July 12, 2000
 Feature Tracking
 on BBSO Hα
 images
- Polar rotation slower than equatorial
- Complex motion around active regions

8 January 2002

BBSO $H\alpha$ Image of the Sun

- Image from 8/20/1999 same day as the white light image
- Filaments and Prominences are cold, dark magnetized material held in magnetic basket above the Sun's visible surface –suspended in the corona
- Prominence bright against dark backdrop
- Hα sensitive to T=10,000 K
 the chromosphere

8 January 2002

<section-header><list-item><list-item><list-item><list-item><list-item>

Sun and Moon from Big Bear (ITP Solar Magnetism Program 2/05/02)

Filament Evolution

Temporal evolution in Hα center line of a sigmoidal filament in active region NOAA 8668 during August 2000. Big Bear Solar Observatory

(a) Videomagnetogram , (b) CaI line wing filtergram, (c) $H\alpha - 0.6$ Å filtergram, and (d) $H\alpha$ center line filtergram.

Filament on 8/19/1999 — The Day Before Its Eruption

correlation tracking of H α line wing. The FOV is 0.05° x 0.05°. Big Bear Solar Observatory

40 minute time lapse movie of motion from Hα line wing.

Sun in UV (304 Å) – SOHO/EIT

- **8/20/1999**
- Satellite data used in concert with BBSO to understand Sun
- Still see filaments and prominences at T=80,000 K
- See Coronal holes

Big Bear Solar Observatory

See Brightness at Limb

Sun in EUV (284 Å) – SOHO/EIT

8/20/1999

- See prominences and filaments dark against the now bright corona
- Temperature sensitivity near 1,500,000 K
- Filaments and prominences fading as corona brightens

Big Bear Solar Observatory

Sun in X-Rays (YOHKOH)

- **8/19/1999**
- Prominences and filaments now gone, but corona is very bright
- Temperature sensitivity about 4,000,000 K
- Higher temperature means sampling higher in the solar atmosphere

Big Bear Solar Observatory

8 January 2002

Sun's Magnetic Field -- KPNO

8/20/1999

- Magnetogram with bright and dark regions being opposite polarities of the line-of-sight magnetic field
- Filaments/Prominences along the neutral line between opposing polarities

8 January 2002

Prominence Eruption in $H\alpha$ — BBSO

- **6/28/2000**
- Prominence eruption
- Coronal Mass Ejection (CME) accompanies
- CME releases 10¹³ kg and 10²⁵ J of energy
- Earth-directed CMEs can have geomagnetic effects

Big Bear Solar Observatory

SOHO/EIT 195 Å Image of CME 6/28/2000

- Limb CME seen with 195 Å
- Effective temperature of 195 Å is roughly 1,500,000 K
- Magnetic loops and coronal holes (dark areas) are both apparent

Big Bear Solar Observatory

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><table-row>

Helioseismic Results from BBSO Data

- Sun's differential rotation changes to solid body rotation at the base of the convection zone
- Site of solar dynamo immediately beneath the convection zone
- Determine the run of internal pressure and density such that P/ρ is determined to 0.5%
- The Sun does not have a convective core
- Seismic age of the Sun is 4.6 GY
- No astrophysical solution to the Sun's neutrino deficit

Big Bear Solar Observatory

- Using solar f-modes ($\omega^2 = GM_{Sun}/R_{Sun}^3$) to determine the Sun's radius and its evolution
- Reveals that Sun's radius changes over cycle are too small to play a role in its luminosity changes ($\Delta L/L = 4\Delta T/T + 2\Delta R/R$)
- Open question: Is the Sun hotter or cooler at activity maximum?

Albedo ⇔ Climate Heat Engine Net solar power reaching Earth

$$P_{Earth} = C_{Sun} \pi R_{Earth} (1 - A)$$

and re-radiated to space

$$P_{Earth}^{out} = 4\pi R_{Earth}^2 \sigma \varepsilon T_{Earth}^4 = P_{Earth}^{in}$$

Fractional Change in net to Earth

$$\frac{\delta P_{Earth}^{in}}{P_{Earth}^{in}} = \frac{\delta C_{Sun}}{C_{Sun}} - \frac{\delta A}{1 - A}$$

Global and seasonal average is $A \sim 0.30$ -Shortwave input (visible, 0.5 μ m, 6000 K) -Longwave output (IR, 15 μ m, 255 K) Big Bear Solar Observatory

The Earth's Albedo is Highly Variable

Local albedo depends upon:		<u>Clear</u>	<u>Overcast</u>	
 Surface type 	Land	0.16	0.50	
	Ocean	0.08	0.44	
	Desert	0.23		
Solar zenith angle (time of day)Meteorology (clouds)	Snow	0.68		
 The global albedo varies with 	1 the se	asons		
North/South land symmetry				
 Snow/ice cover 				
Big Bear Solar Observatory			8 January 2	00

Satellites are the standard way to measure the albedo

- Low-earth orbit (few 100 km)
- Observe one spot (10 km) at at time; average over pixels
- Incomplete space/time coverage
- Expensive
- Tough to calibrate at a fraction of a percent
- Subject to failures (none now working)
- Complex scene models required to analyze data
- Precision of about 0.7%

Big Bear Solar Observatory

- **Ghostly glow of the dark part of the lunar disk**
- E/S ~Albedo X geometry X moon properties
- Intensity varies during the month
 - Largest when phase $\sim \pm \pi$ (full earth, crescent moon)
 - Smallest when phase ~0 (full moon, crescent earth)
- Measured by A. Danjon (1927-34) and J. Dubois (1940-1960)

Observations of the Earthshine

- Our fiducial points – chosen to be in the highlands near the lunar limb
- Each has its own lunar phase function

The Earth's Albedo: Results

- The difference in errors is due 20% seasonal variation in observations (10% in simulations)
- Some 1994-1995 results imply albedo that is 2.5% ±1.8% larger

The earth's albedo is highly variable

 Local albedo depends upon: Surface type 		<u>Clear</u>	<u>Overcast</u>		
	Land	0.16	0.50	_	
	Ocean	0.08	0.44		
	Desert	0.23			
 Solar zenith angle (time of day) 	Snow	0.68			
Meteorology (clouds)		1			
• The global albedo varies with	the se	easor	15		
 North/South land symmetry 					
 Snow/ice cover 					
Big Bear Solar Observatory			8 J	anuary	200