Differential Rotation in the Sun (Modeling with the ASH Code)

Mark S. Miesch

Sacha Brun, Marc DeRosa, Julian Elliot, Juri Toomre Tom Clune, Gary Glatzmaier, Peter Gilman

Outine

- The Solar Rotation
- Modeling with ASH
- (MASH)
- The Deep Convection Zone
- The Upper Shear Layer
- (CASH)
- (SLASH)
- The Tachocline Rotation

The Solar Rotation

- Latitudinal shear in the envelope but little in the interior
- Vertical shear near the top and bottom of the convection zone
- Angular velocity increasing outward (with slow poles!)
- Smooth and Steady

Where does the Differential Rotation come from?

Assume Lorentz forces and viscous dissipation are negligible:

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot(\rho \mathbf{v})=0 \\
\rho \frac{\partial \mathbf{v}}{\partial t}=-\rho(\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{v}-\boldsymbol{\nabla} P+\rho \nabla \Phi+2 \rho \mathbf{v} \times \boldsymbol{\Omega}
\end{gathered}
$$

Average the zonal component over longitude and time
(Assume a statistically steady state) $\mathcal{L}=r \sin \theta\left(\Omega r \sin \theta+\left\langle v_{\phi}\right\rangle\right)$

$$
\boldsymbol{\nabla} \cdot \boldsymbol{F}=0
$$

$F_{r}=\left\langle\rho v_{r}\right\rangle \mathcal{L}+r \sin \theta\left\langle\left(\rho v_{r}-\left\langle\rho v_{r}\right\rangle\right)\left(v_{\phi}-\left\langle v_{\phi}\right\rangle\right)\right\rangle$
$F_{\theta}=\left\langle\rho v_{\theta}\right\rangle \mathcal{L}+r \sin \theta\left\langle\left(\rho v_{\theta}-\left\langle\rho v_{\theta}\right\rangle\right)\left(v_{\phi}-\left\langle v_{\phi}\right\rangle\right)\right\rangle$

Where does the Differential Rotation come from?

- Reynolds stresses vs Meridional Circulation
- Meridional Circulation contribution can also be written as:

$$
\boldsymbol{\nabla} \cdot\left(\left\langle\rho \mathbf{v}_{M}\right\rangle \mathcal{L}\right)=\left\langle\rho \mathbf{v}_{M}\right\rangle \cdot \boldsymbol{\nabla} \mathcal{L}
$$

Streamlines $=$ angular momentum contours! Not like the Sun!

- Reynolds stresses (no mystery here!)

Rotation induces systematic velocity correlations in the convection!

$$
\begin{aligned}
& \text { What Else Influences the Rotation Profile? } \\
& \rho \frac{\partial \mathbf{v}}{\partial t}=-\rho(\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{v}-\nabla P+\rho \nabla \Phi+2 \rho \mathbf{v} \times \boldsymbol{\Omega}
\end{aligned}
$$

Take the curl, average over longitude and time (assume steady state)

$$
\boldsymbol{\nabla} \times\langle\mathbf{v} \times(2 \boldsymbol{\Omega}+\boldsymbol{\omega})\rangle=\left\langle\frac{\boldsymbol{\nabla} \rho \times \boldsymbol{\nabla} P}{\rho^{2}}\right\rangle
$$

Now make the following approximations:

$$
R_{o}=\frac{\omega_{r m s}}{2 \Omega} \ll 1 \quad S=C_{P} \ln \left(\frac{P^{1 / \gamma}}{\rho}\right) \quad \nabla P \approx-\rho g \hat{r}
$$

And you come up with:
Thermal Wind

$$
\boldsymbol{\Omega} \cdot \boldsymbol{\nabla}\left\langle v_{\phi}\right\rangle=\frac{g}{2 r C_{P}}\left\langle\frac{\partial S}{\partial \theta}\right\rangle
$$

$\underline{\text { Modeling Strategy }}=$ Brute Force!

- 3D, Nonlinear, Anelastic fluid equations
+ biggest computers we can find
$=$ high resolution, low dissipation $=$ turbulence $!$
- Shave off granulation layer and deep interior for practical reasons
- Investigate turbulent transport
- Reynolds Stresses
- Heat Flux

The Anelastic Spherical Harmonic Code

- Anelastic Approximation:

$$
\begin{gathered}
\boldsymbol{\nabla} \cdot(\hat{\rho} \mathbf{v})=0 \\
\hat{\rho} \frac{D \mathbf{v}}{D t}=-\boldsymbol{\nabla} P+\rho \mathbf{g}+2 \hat{\rho}(\mathbf{v} \times \Omega)-\boldsymbol{\nabla} \cdot \boldsymbol{D}-[\boldsymbol{\nabla} \hat{P}-\hat{\rho} \mathbf{g}] \\
\hat{\rho} \hat{T} \frac{D}{D t}(\hat{S}+S)=\boldsymbol{\nabla} \cdot\left[\kappa \hat{\rho} \hat{T} \nabla(\hat{S}+S)+\kappa_{r} \hat{\rho} C_{P} \boldsymbol{\nabla}(\hat{T}+T)\right]+\Psi
\end{gathered}
$$

- Pseudospectral: spherical harmonics and stacked Chebyshevs (or compact FD)
- Poloidal/Toroidal: $\hat{\rho} \mathbf{v}=\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times(W \hat{r})+\boldsymbol{\nabla} \times(Z \hat{r})$
- Adams-Bashforth/Crank-Nicholson
- FORTRAN 90/MPI

Deep (Shell) Questions

- Can we reproduce the mean flows inferred from helioseismology?
- What should we expect the fluctuating flows to be like?
- What structures dominate the transport?
- How long do they live?
- Can we detect them?
- How important are the boundary layers?
- How are they influenced by rotation, stratification, magnetic field, ionization, etc
- How can all this mess produce a cyclic, large-scale magnetic field?

Differential Rotation Three Challenges from helioseismology

- Nearly radial angular velocity contours at mid-latitudes (not cylindrical)
- Monotonic decrease in angular velocity from equator to pole (no polar spin-up)
- 30% contrast from equator-to-pole

Keep the thermal diffusivity constant as you decrease the viscosity or you'll lose your differential rotation!
(Brun \& Toomre 2002)

Summary of Deep Shell Results

- Approaching consistency with helioseismic data: definite improvement over the pioneering (laminar) simulations of Gilman and Glatzmaier
- The most turbulent cases generally don't give the best agreement with helioseismic inversions
- Thermal wind (dS/dtheta) important but not the whole story
- Flows are dominated by strong downflow lanes and plumes which exhibit substantial variation on timescales of weeks and even days
- Still not in the low-dissipation limit: results are sensitive to Reynolds and Prandtl numbers

The Upper Shear Layer

- Why does the radial angular velocity gradient become negative?
- What happens with the meridional circulation?
- What role do supergranules play?
- What other scales of motion are present?
- How do the convective patterns evolve over time and how might they be detected?
- How does this layer couple to the deep convection zone?
- Is this where poloidal field regeneration occurs? (the "alpha-effect")

DeRosa, Toomre,
\& Gilman
(2002)
are needed to see this picture.

Summary of results from the upper shear layer

- First global simulations to resolve super-granular scale motions
- Larger-scale (100-200 Mm) cells also present which advect and distort "supergranules"
- Flow structure dominated at the top by a rapidly evolving network of downflow lanes and at greater depths by intermittent plumes
- Negative radial angular velocity gradients maintained through an inward angular momentum flux by Reynolds stresses

Tachocline Questions

- Why is it so thin?
- Is turbulence generated by either shear instabilities or penetrative convection?
- If so, how does this turbulence feed back on the mean rotation profile?
- What is the dynamical importance of the magnetic field?
- Can we account for the inferred temporal variations?
- How does the tachocline couple to the convection zone?
- What role does it play in the solar dynamo?

The Solar Tachocline

- Stably stratified, rapidly rotating
- Rossby modes (vertical vorticity)
- Gravity modes (horizontal divergence)
- Differential rotation is maintained primarily by stresses from the overlying convective envelope.
- Why doesn't the differential rotation spread to the interior?
- Does turbulence in the tachocline wipe out YESthêpladiturdìnal gaadient? Gough \& McIntyre 1998

Kitchatinov \& Rudiger 1996

ASH Tachocline Model (Boussinesq, Thin-Shell)

$$
\begin{gathered}
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}(\sin \theta v)+\frac{1}{\sin \theta} \frac{\partial u}{\partial \phi}+\frac{\partial w}{\partial z}=0 \\
\frac{D \zeta}{D t}=\left(\zeta+\frac{\cos \theta}{R_{o}}\right) \frac{\partial w}{\partial z}+\frac{\sin \theta}{R_{o}} v-\frac{\partial u}{\partial z} \frac{\partial w}{\partial \theta}+\frac{\partial v}{\partial z}\left(\frac{1}{\sin \theta} \frac{\partial w}{\partial \phi}\right)+\mathcal{F}^{\zeta}+\frac{1}{R_{e}} \nabla^{2} \zeta \\
\frac{\partial \Delta}{\partial t}=-\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \mathbf{v} \cdot \nabla v-u^{2} \cos \theta\right]-\frac{1}{\sin \theta} \frac{\partial}{\partial \phi}[\mathbf{v} \cdot \nabla u+u v \cot \theta]-\nabla_{H}^{2} P \\
+\frac{1}{R_{o}}(\zeta \cos \theta-u \sin \theta)+\mathcal{F}^{\Delta}+\frac{1}{R_{e}} \nabla^{2} \Delta \\
\delta \frac{D w}{D t}-\frac{u^{2}+v^{2}}{1+\delta z}=-\frac{1}{\delta} \frac{\partial P}{\partial z}+\frac{1}{\delta} \frac{T}{F_{r}^{2}}+\frac{1}{R_{o}} u \sin \theta+\frac{\delta}{R_{e}} \nabla^{2} w \\
\frac{D T}{D t}+w=\frac{1}{\sigma R_{e}} \nabla^{2} T
\end{gathered}
$$

Decaying Turbulence

What happens if we put in a spectrum of random velocity fluctuations and let it go?

Consider both vortex modes (Rossby waves) and horizontally divergent modes (gravity waves)

Vertical Vorticity

Unforced, random vortex initial conditions Non-Rotating

Vertical Vorticity

Unforced, random vortex initial conditions Rapidly Rotating $\left(\mathrm{R}_{\mathrm{o}}=0.1\right)$

QuickTime ${ }^{\text {TM }}$ and a
GIF decompressor
are needed to see this picture

Horizontal Divergence

Unforced, random wave initial conditions Rapidly Rotating $\left(\mathrm{R}_{\mathrm{o}}=0.1\right)$

Randomly-Forced Simulations

What happens when you stir things up with random, high-wavenumber external forcing?
(intended to represent penetrative convection)

Consider forcing either the Rossby wave or the gravity wave component of the flow

Vertical Vorticity Random vortex forcing $\mathrm{l}=10-12$

Vertical Vorticity Random vortex forcing l=30-35

QuickTime ${ }^{\mathrm{TM}}$ and a
Video decompressor
are needed to see this picture

How would this turbulence interact with a

 background shear flow?

- Continue the randomly-forced simulations but now introduce a zonal shear flow
- Maintain this shear flow against viscous dissipation by also introducing a steady, axisymmetric forcing term to the vertical vorticity equation
- The imposed differential rotation is primarily latitudinal but the vertical shear is actually a bit larger due to the thin-shell geometry
- Shear flow kinetic energy comparable to turbulent kinetic energy
- Initially in hydrostatic and geostrophic balance (thermal wind)

Evolution of Differential Rotation Kinetic Energy

\rightarrow Differential rotation is reduced by the turbulence
\rightarrow Reduction is most efficient for the larger-scale forcing

Summary of Tachocline Results

- Strong coupling between Rossby and gravity wave components when the rotation is strong with equatorward-propagating wave modes
- Nonlinear interactions exhibit both upscale and downscale transfer and the upscale transfer is most efficient when the rotation and stratification are strong
- Randomly forced simulations with imposed shear produce angular momentum transport which is:

Down-gradient (diffusive) in latitude and
Counter-gradient (antidiffusive) in radius

Conclusion

- Where do we stand?
- Simulations are beginning to look more realistic
- Helioseismic comparisons are promising but questions remain
- Tachocline simulations are still in preliminary stages
- Where do we go from here?
- Still searching for more highly turbulent cases which produce mean flows like the Sun
- Coupling between the bulk of the convection zone, the upper shear layer, and the tachocline requires much more investigation
- What role does each play in the solar dynamo?
- MHD shear instabilities in the tachocline

