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• The Solar Rotation

• Modeling with ASH

• The Deep Convection Zone

• The Upper Shear Layer

• The Tachocline Rotation
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The Solar Rotation

• Latitudinal shear in the envelope but little in the interior

• Vertical shear near the top and bottom of the convection zone

• Angular velocity increasing outward (with slow poles!)

• Smooth and Steady

Where does the Differential Rotation come from?
Assume Lorentz forces and viscous dissipation are negligible:

Average the zonal component over longitude and time
(Assume a statistically steady state)
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Where does the Differential Rotation come from?

• Reynolds stresses vs Meridional Circulation

• Meridional Circulation contribution can also be written as:

Streamlines = angular momentum contours!
Not like the Sun!

• Reynolds stresses (no mystery here!)
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What Else Influences the Rotation Profile?

Take the curl, average over longitude and time (assume steady state)

Now make the following approximations:

And you come  up with:
7'8:9<;	=?>A@CBEDGF:H
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Modeling Strategy = Brute Force!

• 3D, Nonlinear, Anelastic fluid equations     
+ biggest computers we can find                  
= high resolution, low dissipation = turbulence!

• Shave off granulation layer and deep interior for 
practical reasons

• Investigate turbulent transport
– Reynolds Stresses
– Heat Flux

The Anelastic Spherical Harmonic Code

• Anelastic Approximation:

• Pseudospectral: spherical harmonics and stacked 
Chebyshevs (or compact FD)

• Poloidal/Toroidal:

• Adams-Bashforth/Crank-Nicholson

• FORTRAN 90/MPI
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Deep (Shell) Questions
• Can we reproduce the mean flows inferred from 

helioseismology?
• What should we expect the fluctuating flows to be 

like?
• What structures dominate the transport?
• How long do they live?
• Can we detect them?
• How important are the boundary layers?
• How are they influenced by rotation, stratification, 

magnetic field, ionization, etc
• How can all this mess produce a cyclic, large-scale 

magnetic field?

Differential Rotation
Three Challenges from helioseismology

• Nearly radial angular velocity contours at 
mid-latitudes (not cylindrical)

• Monotonic decrease in angular velocity 
from equator to pole (no polar spin-up)

• 30% contrast from equator-to-pole
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Rogue’s Gallery
(Brun & Toomre 2002)

• Complexity increases as 
the viscosity and diffusivity 
are decreased

• Flows evolve on timescales 
of days and weeks

• Patterns propagate and are 
advected by the differential 
rotation

• The more turbulent 
simulations are dominated 
by intermittent downflow 
plumes and lanes

Zonal
velocity

Cylindrical
Gradient

Thermal Wind
Component

Residual

Case AB
Ra = 3.4x104

Re = 85
Pe = 21
Ro = 0.16

Case D
Ra = 6.5x105

Re = 410
Pe = 103
Ro = 0.16

Brun & Toomre 
(2002)
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Keep the thermal diffusivity constant as you 
decrease the viscosity or you’ ll lose your 

differential rotation!
(Brun & Toomre 2002)

Summary of Deep Shell Results

• Approaching consistency with helioseismic data: 
definite improvement over the pioneering (laminar) 
simulations of Gilman and Glatzmaier 

• The most turbulent cases generally don’ t give the best 
agreement with helioseismic inversions

• Thermal wind (dS/dtheta) important but not the whole 
story

• Flows are dominated by strong downflow lanes and 
plumes which exhibit substantial variation on 
timescales of weeks and even days

• Still not in the low-dissipation limit: results are 
sensitive to Reynolds and Prandtl numbers
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The Upper Shear Layer

• Why does the radial angular velocity gradient 
become negative?

• What happens with the meridional circulation?

• What role do supergranules play?

• What other scales of motion are present?

• How do the convective patterns evolve over time 
and how might they be detected?

• How does this layer couple to the deep convection 
zone?

• Is this where poloidal field regeneration occurs?        
(the “alpha-effect” )

Derosa, Toomre & Gilman (2002)
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DeRosa, Toomre,
& Gilman

(2002)

QuickTime™ and a
Video decompressor

are needed to see this picture.

Derosa, Toomre & Gilman 
(2002)Solar-like

differential
rotation 
imposed 

on the
inner 

boundary
with a  

stress-free
top
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DeRosa, Toomre & Gilman (2002)

Red:
uniformly rotating

Inner boundary
Blue:

Differentially Rotating 
Inner boundary

Radial 
Angular Velocity 

Profiles

�
Negative radial 

gradient but smaller 
than what you’d expect 

from angular 
momentum 

conservation

Summary of results from the 
upper shear layer

• First global simulations to resolve            
super-granular scale motions

• Larger-scale (100-200 Mm) cells also present 
which advect and distort “supergranules”

• Flow structure dominated at the top by a 
rapidly evolving network of downflow lanes 
and at greater depths by intermittent plumes

• Negative radial angular velocity gradients 
maintained through an inward angular 
momentum flux by Reynolds stresses
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Tachocline Questions
• Why is it so thin?
• Is turbulence generated by either shear instabiliti es or 

penetrative convection?
• If so, how does this turbulence feed back on the 

mean rotation profile?
• What is the dynamical importance of the magnetic 

field?
• Can we account for the inferred temporal variations?
• How does the tachocline couple to the convection 

zone?
• What role does it play in the solar dynamo?

The Solar Tachocline

• Stably stratified, rapidly rotating
– Rossby modes (vertical vorticity)
– Gravity modes (horizontal divergence)

• Differential rotation is maintained primarily by 
stresses from the overlying convective 
envelope.  

• Why doesn’ t the differential rotation spread to 
the interior?
– Does turbulence in the tachocline  wipe out 

the latitudinal gradient?  YES - Spiegel & Zahn 1992 : NO - Gough & McIntyre 1998
Kitchatinov & Rudiger 1996
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ASH Tachocline Model (Boussinesq, Thin-Shell)

Decaying Turbulence

What happens if we put in a spectrum of random 
velocity fluctuations and let it go?

Consider both vortex modes (Rossby waves) and 
horizontally divergent modes (gravity waves)
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Vertical Vorticity
Unforced, random vortex initial conditions

Non-Rotating

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Vertical Vorticity
Unforced, random vortex initial conditions

Rapidly Rotating (Ro = 0.1)

QuickTime™ and a
GIF decompressor

are needed to see this picture.
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Horizontal Divergence
Unforced, random wave initial conditions

Rapidly Rotating (Ro = 0.1)

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Randomly-Forced Simulations

What happens when you stir things up with 
random, high-wavenumber external forcing?

(intended to represent penetrative convection)

Consider forcing either the Rossby wave or the 
gravity wave component of the flow
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Vertical Vorticity
Random vortex forcing l=10-12

QuickTime™ and a
Video decompressor

are needed to see this picture.

Vertical Vorticity
Random vortex forcing l=30-35

QuickTime™ and a
Video decompressor

are needed to see this picture.
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Average Energy Spectra
Vortex Forcing

l=10-12 l=30-35

How would this turbulence interact with a 
background shear flow?

• Continue the randomly-forced simulations but now introduce a 
zonal shear flow

• Maintain this shear flow against viscous dissipation by also 
introducing a steady, axisymmetric forcing term to the vertical 
vorticity equation

• The imposed differential rotation is primarily latitudinal but the 
vertical shear is actually a bit larger due to the thin-shell 
geometry

• Shear flow kinetic energy comparable to turbulent kinetic energy
• Initially in hydrostatic and geostrophic balance (thermal wind)
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Evolution of Differential Rotation 
Kinetic Energy

�
Differential rotation is reduced by the turbulence

�
Reduction is most efficient for the larger-scale forcing

Evolution 
of 

Angular 
Momentum

Profiles
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Summary of Tachocline Results
• Strong coupling between Rossby and gravity wave 

components when the rotation is strong with 
equatorward-propagating wave modes

• Nonlinear interactions exhibit both upscale and 
downscale transfer and the upscale transfer is most 
eff icient when the rotation and stratification are 
strong

• Randomly forced simulations with imposed shear 
produce angular momentum transport which is:

Down-gradient (diffusive) in latitude and 
Counter-gradient (antidiffusive) in radius

Conclusion
• Where do we stand?

– Simulations are beginning to look more realistic
– Helioseismic comparisons are promising but questions 

remain
– Tachocline simulations are still i n preliminary stages

• Where do we go from here?
– Still searching for more highly turbulent cases which 

produce mean flows like the Sun 
– Coupling between the bulk of the convection zone, the 

upper shear layer, and the tachocline requires much 
more investigation

– What role does each play in the solar dynamo?
• MHD shear instabiliti es in the tachocline


