Kahler - Independent G_2 Fluxless Vacua and their Phenomenology

Konstantin Bobkov

Ohio State University and KITP

KB hep-th/0906.5359, B. Acharya, KB, hep-th/0810.3285
B. Acharya, KB, G. Kane, P. Kumar, J. Shao, S. Watson, hep-th/0806.0863
B. Acharya, KB, G. Kane, P. Kumar, J. Shao, hep-ph/0801.0478
B. Acharya, KB, G. Kane, P. Kumar, J. Shao, hep-th/0701034
B. Acharya, KB, G. Kane, P. Kumar, D. Vaman, hep-th/0606262

Introduction and motivation

Why do we study 4-dim String/M theory vacua?

- Non-Abelian gauge symmetry
- Chiral fermions
- Hierarchical Yukawa couplings
- Dynamical supersymmetry breaking
- Gauge coupling unification

Great! But can we make genuine predictions even in principle?

- By compactifying to 4D, we obtain a multitude of scalar fields moduli, parameterizing internal metric deformations, brane positions, etc.
- Their masses must be large enough to be compatible with observations (BBN => $M_{mod} > O(10)TeV$)

• Subtlety:
$$f_{QCD} = \frac{4\pi}{g_3^2(M)} + i \frac{\theta_{QCD}(M)}{2\pi}$$
 heavy light

- In String/M theory all masses and couplings are functions of the moduli vevs
- Once the moduli are stabilized, all couplings are completely fixed and are computable in principle
- Can we stabilize all moduli so that we can make predictions?

• In particular, can String/M theory *naturally* explain the hierarchy between the electroweak scale M_Z =90 GeV and Planck scale M_{Plank} ~10¹⁹ GeV?

Strong hints in favor of low scale SUSY from bottom up:

- Radiative Electroweak Symmetry Breaking naturally occurs in the MSSM (large top Yukawa drives $m_{H_u}^2 < 0$)
- MSSM gauge coupling unification
- However, while supersymmetry alone can stabilize the hierarchy, it still does not explain it!

Standard lore in 1985: strong hidden sector gauge dynamics may generate a potential for the moduli and break supersymmetry at a small scale

- Fluxless G_2 compactifications of M theory can naturally implement this good old idea from top down!
 - B. Acharya, KB, hep-th/0810.3285
 - B. Acharya, KB, G. Kane, P. Kumar, J. Shao, hep-th/0701034
 - B. Acharya, KB, G. Kane, P. Kumar, D. Vaman, hep-th/0606262

M theory on G_2 manifolds

- Consider M theory compactifications on singular 7-dim manifolds X with G_2 holonomy (required for $\mathcal{N}=1$ SUSY)
- The Riemannian metric g(X) can be expressed in terms of the associative 3-form Φ as

$$g_{ij} = (\det s)^{-\frac{1}{9}} s_{ij},$$

$$s_{ij} = \frac{1}{144} \Phi_{ikn} \Phi_{jlm} \Phi_{rst} \varepsilon^{knlmrst}, \quad \varepsilon^{12...7} = +1$$

where

• Expand Φ in terms of basis harmonic 3-forms

$$\Phi = \sum_{i=1}^{N} s_i \phi_i, \quad \phi_i \in H^3(X, Z), \ N = b^3(X)$$

• Unlike CY, there is only one type of geometric moduli:

$$z_i = t_i + is_i, i = 1,...,N; N = b_3(X)$$

Axions / (periods of the 3-form C_3 , transform under a shift symmetry)

periods of the associative 3-form Φ (fluctuations of the metric)

- This PQ-type shift symmetry guarantees that in the absence of fluxes the entire superpotential is purely non-perturbative => exponential hierarchies are natually expected!
- Non-Abelian gauge fields are localized on three-dimensional submanifolds $Q \in X$ along which there is an orbifold singularity. Acharya. hep-th/9812205, hep-th/0011089

• Example: locally, M-theory on $R^{3,1} \times Q \times (C_2/Z_N)$ is the 11-dim SUGRA coupled to a 7-dim SU(N) gauge theory on $R^{3,1} \times Q$. associative (supersymmetric) 3-cycle

- Chiral fermions are localized at point-like isolated singularities $p \in X$. Atiyah-Witten. hep-th/0107177, Acharya-Witten. hep-th/0109152
- A particle localized at p will be charged under the gauge group supported along the associative three-cycle Q if $p \in Q$

Bulk Kahler potential

Beasley-Witten: hep-th/0203061; Acharya, Denef, Valandro: hep-th/0502060

$$K = -3\ln(4\pi^{1/3}V_7)$$

• We know that the 7-dim volume V_7 is a homogeneous function of the moduli s_i of degree 7/3

$$\sum_{i=1}^{N} s_{j} \frac{\partial V_{7}}{\partial s_{i}} = \frac{7}{3} \implies \sum_{i=1}^{N} s_{j} \frac{\partial K}{\partial s_{i}} = -7; \sum_{i,j=1}^{N} s_{i} s_{j} \frac{\partial^{2} K}{\partial s_{i} \partial s_{j}} = 7$$

• These properties and everything that follows from them are all we use! In particular, no specific choice of the 7-dim volume needs to be made in order to compute the soft SUSY breaking terms!

- In earlier work
- B. Acharya, KB, G. Kane, P. Kumar and J. Shao, hep-ph/0801.0478
- B. Acharya, KB, G. Kane, P. Kumar and J. Shao, hep-th/0701034,
- B. Acharya, KB, G. Kane, P. Kumar and Diana Vaman, hep-th/0606262

we assumed a specific N-parameter family of the 7-dim volumes consistent with G_2 holonomy

$$V_7 = \prod_{i=1}^N s_i^{n_i}$$
, where $\sum_{i=1}^N n_i = \frac{7}{3}$

• We then also assumed a canonical Kahler potential for charged chiral matter

$$\widetilde{K} = \overline{\phi} \phi$$

• In B. Acharya, KB hep-th/0810.3285, presented here, we redid the entire analysis with no such assumptions

Kahler potential for matter fields

- Because chiral matter is localized at points in the seven extra dimensions, we expect that the corresponding kinetic terms should be "largely independent of bulk moduli fields"
- A single conical singularity gives only N of SU(N) which gives a trivial superpotential
- When W=0 there is a one-to one correspondence between holomorphic gauge-invariant operators (HGIO) and D-flat directions Taylor, Luty, hep-th/9506098
- One cannot construct any HGIO from a single N => no D-flat directions => no local moduli

Matter Kahler metric from dim reduction

- The physics of a conical singularity in M-theory does not involve any new scale, aside from the 11d Planck scale so the natural frame is the 11d Einstein frame.
- Lagrangian density in 11d frame

$$L \sim M_{11}^{9} \sqrt{g_{11}} R + \delta_{7} \wedge \partial_{M} \overline{\phi} \partial_{N} \phi g^{MN} \kappa(s_{i}) \sqrt{g_{11}} + \dots$$
where
$$\sum_{i=1}^{N} s_{i} \frac{\partial \kappa}{\partial s_{i}} = 0$$
Peaked at the position of the matter multiplet

Kinetic term is "largely independent of bulk moduli"

• Integrating over X gives

$$L \sim V_7 M_{11}^9 \sqrt{g_4} R + \kappa(s_i) g^{\mu\nu} \partial_{\mu} \overline{\phi} \partial_{\nu} \phi \sqrt{g_4} + \dots$$

Weil rescaling into the 4d Einstein frame gives

$$L \sim m_p^2 \sqrt{g_E} R_E + \frac{\kappa(s_i)}{V_7} g_E^{\mu\nu} \partial_{\mu} \overline{\phi} \partial_{\nu} \phi \sqrt{g_E} + \dots$$

- The kinetic term is non-trivial in the 4d Einstein frame the standard frame in which we define the Kahler potential.
- Read off the Kahler potential from the kinetic term

$$\widetilde{K} = \kappa(s_i) \frac{\overline{\phi}\phi}{V_7}$$

Matter Kahler metric from the finiteness of the physical (normalized) Yukawa couplings

• In $\mathcal{N}=1$ D=4 supergravity

$$|Y_{\alpha\beta\gamma}| = e^{K/2} |Y'_{\alpha\beta\gamma}| \left(\widetilde{K}_{\alpha}\widetilde{K}_{\beta}\widetilde{K}_{\gamma}\right)^{-1/2} \sim |Y'_{\alpha\beta\gamma}| \left(V_{7}^{3}\widetilde{K}_{\alpha}\widetilde{K}_{\beta}\widetilde{K}_{\gamma}\right)^{-1/2}$$

where (in M-theory on G_2) the superpotential Yukawa is

$$|Y'_{\alpha\beta\gamma}| \sim e^{-2\pi V_{\alpha\beta\gamma}}, V_{\alpha\beta\gamma} = \sum_{i=1}^{N} m_i^{\alpha\beta\gamma} s_i$$

• There are well-defined local models where manifold X is non-compact, i.e. $V_7 \to \infty \Rightarrow m_{pl}/M_{11} \to \infty$

$$Y_{\alpha\beta\gamma}$$
 is finite $\Rightarrow K_{\alpha} \sim K_{\beta} \sim K_{\beta} \sim \frac{1}{V_{\gamma}}$

Kahler potential for the visible sector matter

• For the visible sector matter fields, the Kahler potential may generally include a tree-level interaction term with the hidden sector

$$\widetilde{K} = \widetilde{K}_{\alpha\overline{\beta}} Q^{\alpha} \overline{Q}^{\overline{\beta}} = \frac{\kappa_{\alpha\overline{\beta}}(s_i) Q^{\alpha} \overline{Q}^{\overline{\beta}}}{V_7} \left(1 + c(s_i) \frac{\phi \overline{\phi}}{3V_7} \right)$$

• In the above we assumed that the flavor structure of $K_{\alpha\bar{\beta}}$ is completely determined by the matrix $\kappa_{\alpha\bar{\beta}}(s_i)$. Here this form is motivated by the suppression of the FCNCs from the bottom up. Another way to suppress FCNCs is to assume that $c(s_i) \approx 0$.

• Expand the fundamental associative three-form Φ in a basis of harmonic three-forms $\{\phi_i\}$

$$\Phi = \sum_{i=1}^{b_3(X)} s_i \phi_i, \quad \phi_i \in H^3(X, Z)$$

• Choose the basis of $\{\phi_i\}$ such that for all Poincare dual four-cycles $\{\beta_i\}$ the periods of * Φ are positive definite

$$\int_{\beta_i} *\Phi > 0, \quad \forall \beta_i, \text{ where } \beta_i = PD_X(\phi_i) \in H_4(X)$$

Then, we can ensure that all four-cycle volumes are positive because

$$\operatorname{Vol}(\beta_i) \ge \int_{\beta_i} *\Phi > 0$$

• Consider an associative three-cycle Q

Vol(Q) =
$$\int_{Q} \Phi = \sum_{i=1}^{b_3(X)} s_i \int_{Q} \phi_i = \sum_{i=1}^{b_3(X)} s_i N_i$$

• Key point: we implicitly assume that we study any G_2 manifold X containing an associative three-cycle Q supporting a gaugino condensate, such that in the above basis of harmonic three-forms $\{\phi_i\}$ the integers specifying the homology of Q are all positive definite

$$N_i = \int_{\mathcal{Q}} \phi_i > 0$$

Moduli stabilization and SUSY breaking

 Superpotential is generated by strong dynamics in the hidden sectors (PQ symmetry => W is non-pert.)

$$W = A_1 \phi^a e^{ib_1 f} + A_2 e^{ib_2 f} + \dots / \text{Integers specifying the homology of the hidden sector 3-cycle}$$
 where the gauge kinetic function
$$f = \sum_{i=1}^{N} N_i z_i$$

Most economical way to fix moduli and get dS vacua! All F-terms will have the same phase. Important for CP!

- An effective meson field $\phi = \sqrt{2\hat{Q}\hat{Q}} = \phi_0 e^{i\theta}$
- For $SU(N_c)$ and SU(M) hidden sector gauge groups and $N_f = 1$ flavor: $b_1 = \frac{2\pi}{P}$, $b_2 = \frac{2\pi}{M}$, $a = -\frac{2}{P}$, where $P = N_c - 1$

$$b_1 = \frac{2\pi}{P}$$
, $b_2 = \frac{2\pi}{M}$, $a = -\frac{2}{P}$, where $P = N_c - 1$

• Inverse Kahler metric (first consider $\kappa(s_i) = 1$):

$$K^{i\bar{j}} = \frac{4s_i s_{\bar{j}}}{3a_{\bar{j}}} \frac{(\Delta^{-1})^{i\bar{j}}}{1 + \frac{\phi_0^2}{3V_7}}; K^{i\bar{\phi}} = i\frac{2}{3} \frac{s_i \bar{\phi}}{1 + \frac{\phi_0^2}{3V_7}}; K^{\phi\bar{\phi}} = V_7 \left[1 + \frac{7}{3} \frac{1}{1 + \frac{\phi_0^2}{3V_7}} \frac{\phi_0^2}{3V_7} \right]$$

"angular" (scale-invariant) coordinates on the moduli space

$$\dot{a}_{i} = -\frac{1}{3} s_{i} \frac{\partial K}{\partial s_{i}} \qquad \sum_{i=1}^{N} a_{i} = \frac{7}{3} \qquad \sum_{\bar{j}=1}^{N} (\Delta^{-1})^{i\bar{j}} a_{\bar{j}} = a_{i} \qquad \sum_{i=1}^{N} (\Delta^{-1})^{i\bar{j}} = 1$$

These contraction properties are completely general and are crucial for our ability to minimize the scalar potential and perform explicit computations of the soft terms!

N=1 D=4 SUGRA scalar potential

$$\begin{split} V &= \frac{e^{\frac{\phi_0^2}{V_7}}}{64\pi V_7^3} \Bigg[\frac{4}{3} \sum_{i=1}^N \sum_{j=1}^N \frac{s_i s_j N_i N_j}{a_j} \frac{(\Delta^{-1})^{i\bar{j}}}{1 + \frac{\phi_0^2}{3V_7}} (b_1 A_1 \phi_0^a e^{-b_1 \vec{N} \cdot \vec{s}} - b_2 A_2 \phi_0^a e^{-b_2 \vec{N} \cdot \vec{s}})^2 \\ &+ 4 \vec{N} \cdot \vec{s} (b_1 A_1 \phi_0^a e^{-b_1 \vec{N} \cdot \vec{s}} - b_2 A_2 \phi_0^a e^{-b_2 \vec{N} \cdot \vec{s}}) (A_1 \phi_0^a e^{-b_1 \vec{N} \cdot \vec{s}} - A_2 \phi_0^a e^{-b_2 \vec{N} \cdot \vec{s}}) \\ &+ 7 (b_1 A_1 \phi_0^a e^{-b_1 \vec{N} \cdot \vec{s}} - b_2 A_2 \phi_0^a e^{-b_2 \vec{N} \cdot \vec{s}})^2 \bigg(1 + \frac{\phi_0^2}{3V_7} \bigg) - 3 (A_1 \phi_0^a e^{-b_1 \vec{N} \cdot \vec{s}} - A_2 \phi_0^a e^{-b_2 \vec{N} \cdot \vec{s}})^2 \\ &- \frac{4}{3} \Bigg(\frac{(b_1 A_1 \phi_0^a e^{-b_1 \vec{N} \cdot \vec{s}} - b_2 A_2 \phi_0^a e^{-b_2 \vec{N} \cdot \vec{s}})^2}{1 + \frac{\phi_0^2}{3V_7}} \vec{N} \cdot \vec{s} + \frac{7}{2} (A_1 \phi_0^a e^{-b_1 \vec{N} \cdot \vec{s}} - A_2 \phi_0^a e^{-b_2 \vec{N} \cdot \vec{s}}) \Bigg) \\ &\times \Bigg(a A_1 \phi_0^a e^{-b_1 \vec{N} \cdot \vec{s}} + \frac{\phi_0^2}{V_7} (A_1 \phi_0^a e^{-b_1 \vec{N} \cdot \vec{s}} - A_2 \phi_0^a e^{-b_2 \vec{N} \cdot \vec{s}}) \Bigg) \\ &+ \frac{V_7}{\phi_0^2} \Bigg(1 + \frac{7}{3} \frac{1}{1 + \frac{\phi_0^2}{3V_7}} \frac{\phi_0^2}{3V_7} \Bigg) a A_1 \phi_0^a e^{-b_1 \vec{N} \cdot \vec{s}} + \frac{\phi_0^2}{V_7} (A_1 \phi_0^a e^{-b_1 \vec{N} \cdot \vec{s}} - A_2 \phi_0^a e^{-b_2 \vec{N} \cdot \vec{s}}) \Bigg)^2 \Bigg] \end{aligned}$$

- Minimize the potential with respect to the moduli and the meson to obtain a system of N+1 coupled equations
- Solve in the limit when the volume V_O of the hidden

sector associative cycle
$$Q$$
 is large

• Moduli vevs: $s_i = \frac{a_i}{N_i} \frac{3}{7} V_Q$ where $V_Q \approx \frac{1}{2\pi} \frac{PM}{M - P} \ln \left(\frac{MA_1 \phi_0^a}{PA_2} \right)$

• Parameters a_i satisfy a $\frac{\partial K}{\partial s_i}\Big|_{s_i = \frac{a_i}{N}} + 3N_i = 0$ Integers specifying the homology of the hidden sector 3-cycle Q

• 7-dim volume is fixed at:
$$V_7 = V_Q^{7/3} \left(\frac{3}{7}\right)^{7/3} \times V_7(s_i)|_{s_i = \frac{a_i}{N_i}}$$

Alternatively, introducing a basis of dual variables

$$\tau_i \equiv \frac{\partial V_7}{\partial s_i} = \frac{1}{3} \int_X \phi_i \wedge *\Phi = \frac{1}{3} \int_{\beta_i} *\Phi$$

• We find upon minimizing the scalar potential

$$\tau_i = N_i \frac{7V_7}{3V_Q} > 0$$
, $\Leftrightarrow *\Phi = \alpha \cdot PD_X(Q)$, $0 < \alpha \in R$
Fixed by the supergravity scalar potential

The co-associative four-form Φ is dynamically fixed by the homology of Q!

• Recasting the volume V_7 in terms of τ_i we can express:

$$S_i = \frac{4V_Q}{7} \frac{\partial}{\partial \tau_i} \ln V_7(\tau_k) \bigg|_{\tau_k = N_t} \text{Integers specifying the homology}$$
 of the hidden sector 3-cycle Q

• In Type IIB even more explicit: $\tau_i = \frac{\tau_D}{3} \frac{\partial}{\partial n_i} \ln \sum d_{ljk} n_l n_j n_k$ K.B, V. Braun, P. Kumar and S. Raby: hep-th 1003.1982

• In Type IIB K.B, V. Braun, P. Kumar and S. Raby: hep-th/1003.1982

$$t_{i} = \frac{n_{i}\tau_{D}^{1/2}}{\sqrt{3\sum d_{ijk}n_{i}n_{j}n_{k}}}, \ \tau_{i} = \frac{\tau_{D}}{3}\frac{\partial}{\partial n_{i}}\ln\sum d_{ljk}n_{l}n_{j}n_{k}, \ V_{CY} = \frac{\tau_{D}^{3/2}}{3\sqrt{3\sum d_{ijk}n_{i}n_{j}n_{k}}}$$

• Explicit three-parameter example (hep-th/1003.1982)

$$\tau_1 = \frac{6}{30}\tau_D, \ \tau_2 = \frac{11}{30}\tau_D, \ \tau_3 = \frac{13}{30}\tau_D, \ t_1 = t_2 = t_3 = \frac{\tau_D^{1/2}}{3\sqrt{5}}, \ V_{CY} = \frac{\tau_D^{3/2}}{9\sqrt{5}}$$

- At the minimum all Kahler moduli are controlled by a single parameter τ_D ! In G_2 this is true for all moduli!
- This approach to moduli fixing is highly constraining and therefore potentially predictive

•Key point:

To find the soft supersymmetry breaking parametrs we do not need to know the explicit values of a_i and s_i ! The following general contraction properties are all we need to know!

$$\sum_{i=1}^{N} a_i = \frac{7}{3}, \qquad \sum_{\bar{j}=1}^{N} (\Delta^{-1})^{i\bar{j}} a_{\bar{j}} = a_i, \qquad \sum_{i=1}^{N} (\Delta^{-1})^{i\bar{j}} = 1$$

• Potential at the minimum in the leading order as a function of the meson vev

$$V_0 \approx \left[\left(\frac{2}{M-P} + \frac{\phi_0^2}{V_7} \right)^2 + \frac{14}{P_{eff}} \left(1 - \frac{2}{3(M-P)} \right) \left(\frac{2}{M-P} + \frac{\phi_0^2}{V_7} \right) - 3 \frac{\phi_0^2}{V_7} \right] \frac{V_7}{\phi_0^2} m_{3/2}^2$$

$$\frac{\partial V_0}{\partial \phi_0^2} = 0 \& V_0 = 0 \quad \Rightarrow \quad \frac{\phi_0^2}{V_7} \approx \frac{2}{M - P} + \frac{7}{P_{eff}} \left(1 - \frac{2}{3(M - P)} \right) + O\left(\frac{1}{P_{eff}^2}\right)$$

$$V_0 = 0 \implies P_{eff} \approx \frac{14(3(M-P)-2)}{9(M-P)-6\sqrt{6(M-P)}}$$

where
$$P_{eff} \equiv P \ln \left(\frac{MA_1 \phi_0^a}{PA_2} \right)$$
 such that $V_Q \approx \frac{1}{2\pi} \frac{P_{eff} M}{M - P}$
 $V_Q > 0 \& M > P \Longrightarrow P_{eff} > 0 \Longrightarrow M - P \ge 3$

• For
$$M - P = 3$$
 we obtain $P_{eff} \approx 61.65$, $\frac{\phi_0^2}{V_7} \approx 0.75$, $s_i \approx 1.4 \frac{a_i}{N_i} M$

• Can we actually tune
$$P_{eff} \equiv P \ln \left(\frac{MA_1 \phi_0^a}{PA_2} \right) \approx 62 ?$$

• Recall $A_1 = \tilde{C}Pe^{-\frac{S_1'}{2P}}; A_2 = \tilde{C}Me^{-\frac{S_2'}{2M}}$

• Recall
$$A_1 = \tilde{C}Pe^{-\frac{S_1}{2P}}; A_2 = \tilde{C}Me^{-\frac{S_2}{2M}}$$

Ray-Singer torsions

• When the 3-cycle is a lens space S^3/Z_q , the KK thresholds

are:
$$S'_{SU(N)} = -2N \ln q + 2(N-2) \ln \left(4 \sin^2 \left(4 \pi m w/q\right)\right)$$

$$\Rightarrow P_{eff} \approx P \ln \left[\frac{\left(4 \sin^2(4\pi n l/q)\right)^{\frac{M-2}{M}}}{\left(4 \sin^2(4\pi n w/q)\right)^{\frac{P-1}{P}}} \right]$$

P _{eff}	P	M	q	1	W	n	m
61.3	10	13	99	12	25	1	1
61.9	20	23	17	6	4	1	1
64.2	27	30	11	3	5	1/2	1/2

Perturbative corrections may help fine tune the CC

$$\delta V_0^{1-loop} = \frac{1}{32\pi^2} Str \sum_i (-1)^{2J_i} (2J_i + 1) m_i^2 M_{11}^2 + \dots$$

• From non-Abelian SU(N) and U(1) gauginos:

$$\delta V_0^{SU(N_i)} = -\frac{1}{16\pi^2} N_i^2 \lambda_i^2 (N_i, w_i) m_{3/2}^2 M_{11}^2, \ \delta V_0^{U(1)} = -\frac{1}{16\pi^2} \lambda_i^2 (\vec{w}_i) m_{3/2}^2 M_{11}^2$$

discrete Wilson line winding numbers

• Vary discrete Wilson lines to scan over all N_i and w_i

in all hidden sectors => Fluxless discretuum!

• When M-P=3 and the CC is tuned $P_{eff} \approx 60$, the volume of the hidden sector cycle is

$$V_Q = \operatorname{Im} f = \sum_{i=1}^{N} N_i s_i = \frac{M P_{eff}}{6\pi} \approx \frac{10M}{\pi}$$

the contributions of the leading condensates are fixed!

$$\delta W_0 \sim e^{-\frac{2\pi}{M}V_Q} \approx e^{-20}$$

• Consider another rigid 3-cycle *Y*, supporting an SU(*M*) gauge group. Its volume is also proportional to *M*!

$$V_Y = \sum_{i=1}^{N} N_i' s_i = \frac{3}{7} V_Q \sum_{i=1}^{N} \frac{N_i' a_i}{N_i} = M \times O(1)$$

• The extra contributions to the superpotential can be suppressed relative to the leading ones when M >> M

$$\delta W_{extra} \sim e^{-\frac{2\pi}{M'}V_Y} \approx e^{-2\pi\frac{M}{M'} \times O(1)} << \delta W_0$$

• Gravitino mass is fixed once coarse tuning is done

$$m_{3/2} = m_{pl} e^{\frac{\phi_0^2}{2V_7}} \frac{|P - M|C_2}{8\sqrt{\pi}V_7^{3/2}} e^{-\frac{P_{eff}}{M - P}} \approx 9 \times 10^5 (TeV) \frac{C_2}{V_7^{3/2}}$$

• Extract
$$V_7$$
 from $\frac{1}{8\pi m_{pl}^2} = \frac{\alpha_{GUT}^3 V_{Q_{vis}}^{7/3} L(Q_{vis})^{2/3}}{32\pi^2 M_{GUT}^2 V_7}$ Friedmann and Witten, hep-th/0211269

- For typical values $\alpha_{GUT}^{-1} = V_{Q_{vis}} \approx 25$, $M_{GUT} \approx 2 \times 10^{16} GeV$
- Obtain $V_7 \approx 137.4 \times L(Q_{vis})^{2/3}$, where $L(Q_{vis}) = 4 \sin^2(5\pi w/q)$

N	q	2	3	4	4	6	6	6
	W	1	1, 2	1, 3	2	1, 5	2, 4	3
A COLUMN	V_7	549.6	594.5	549.6	872.4	453.7	943.7	1143.2
	$m_{3/2}/C_2$	70 TeV	62 TeV	70 TeV	35 TeV	93 TeV	31 TeV	23 TeV

- Moduli: $M_1 \approx O(200-300) \times m_{3/2}$, $m_i \approx O(1) \times m_{3/2} < 2 \times m_{3/2}$
- $m_{3/2} \sim O(10) TeV =>$ moduli are heavy enough to decay before BBN. Non-standard cosmology: large entropy production at late times, but before BBN; dark matter is generated non-thermally. When the LSP is mostly Wino => relic density is compatible with observation (Gordy's talk) Acharya, et.al, hep-ph/0804.0863, astro-ph/0908.2430
- Axions (B. Acharya, KB, P. Kumar: hep-th/1004.5138, Piyush's talk): to fix all axions we must include the truncated non-perturbative contributions

$$m_1 \approx O(200-300) \times m_{3/2}, \quad m_i^2 \approx O(1) \frac{m_{pl}^2 m_{3/2}}{f_i^2} e^{K/2} e^{-b_i V_i}, \ i = 1,..., N$$

• The entropy dilution due to late time moduli decays allows decay constants f_i much closer to the GUT scale

Generalizing to the case when $\kappa(s_i) \neq const$

• The main difference is in the moduli vevs

$$s_i \approx \frac{1}{N_i} \left(a_i + c_i \frac{\phi_c^2}{3} r \right) \frac{3}{7} V_Q$$

where, $r \approx \frac{3}{2}$ and the vev of the canonically normalized meson $\phi_c^2 \equiv \frac{\kappa(s_i)}{V_7} \phi_0^2 \approx \frac{2}{M-P} + \frac{7}{P_{eff}} \left(1 - \frac{2}{3(M-P)}\right)$ is the same as when $\kappa(s_i) = 1$. Parameters a_i , c_i can be found from

$$\left. s_i \frac{\partial K}{\partial s_i} \right|_{s_i = \frac{1}{N_i} \left(a_i + c_i \frac{\phi_c^2}{3} r \right)} + 3a_i = 0; \quad \left. s_i \frac{\partial \ln \kappa}{\partial s_i} \right|_{s_i = \frac{1}{N_i} \left(a_i + c_i \frac{\phi_c^2}{3} r \right)} - c_i = 0$$

• Use the general contraction rules to obtain

$$e^{K/2}F^{k} \approx -i2s_{k} \frac{1}{P_{eff}} \left(1 + \frac{2}{\phi_{c}^{2}(M-P)} + O\left(\frac{1}{P_{eff}}\right) \right) \times m_{3/2}m_{pl}$$

$$e^{K/2}F^{\phi} \approx \phi \left(1 - \frac{7}{3P_{eff}} \right) \left(1 + \frac{2}{\phi_{c}^{2}(M-P)} + O\left(\frac{1}{P_{eff}}\right) \right) \times m_{3/2}m_{pl}$$

Notice two key properties of the F-terms:

$$F^i \approx s_i \times const$$
, and $F^i \ll F^{\phi}$

• When computing the soft terms use homogeneity:

$$\sum_{i} F^{i} \partial_{i} \frac{\kappa_{\alpha\beta}}{V_{7}} \approx const \times \sum_{i} s_{i} \partial_{i} \frac{\kappa_{\alpha\beta}}{V_{7}} = -\frac{7}{3} \frac{\kappa_{\alpha\beta}}{V_{7}} \times const$$

Summary of the soft SUSY breaking terms

$$m_{1/2}^{tree} \approx -\frac{1}{P_{eff}} \left(1 + \frac{2}{\phi_c^2 (M - P)} + \frac{\delta}{P_{eff}} \right) \times m_{3/2} << m_{3/2}, \text{ since } P_{eff} \approx 60$$

$$m_{1/2}^{1-loop} \approx \frac{\alpha_{GUT}}{4\pi} \left(\left(3C_a - \sum_{\alpha} C_a^{\alpha} \right) K_1 + \frac{2}{3} K_2 \sum_{\alpha} C_a^{\alpha} \right) \times m_{3/2}$$

$$A_{\alpha\beta\gamma}^{tree} \approx \left(K_2 + \frac{4\pi}{P_{eff}} \left(1 + \frac{2}{\phi_c^2 (M - P)}\right) V_{Q_{\alpha\beta\gamma}}\right) \times m_{3/2}$$

$$A_a^{1-loop} \approx -\frac{1}{16\pi^2} \gamma_a K_1 \times m_{3/2}$$

$$m_{\alpha}^{2} \approx (1-c) \left(m_{3/2}^{2} - \frac{7}{3} \left(m_{1/2}^{tree} \right)^{2} \right)$$

Volume of the cycle $Q_{\alpha\beta\gamma}$ that connects three co-dimension seven singularities supporting charged chiral matter

$$K_1 \equiv 1 - \frac{1}{3} \left(1 + \frac{2}{\phi_c^2 (M - P)} \right) \left(\phi_c^2 + \frac{7}{P_{eff}} \right), \quad K_2 \equiv \left(1 + \frac{2}{\phi_c^2 (M - P)} \right) (1 - c) \phi_c^2$$

Computation of soft SUSY breaking terms

• Since we stabilized the moduli we can compute the terms in the soft-breaking lagrangian
Nilles: Phys. Rept. 110 (1984) 1, Brignole et.al.: hep-th/9707209

• Tree-level gaugino masses

$$M_{1/2} = m_p \frac{e^{\hat{K}/2} F^n \partial_n f_{sm}}{2i \operatorname{Im} f_{sm}}$$

where the SM gauge kinetic function

$$f_{sm} = \sum_{i=1}^{N} N_i^{sm} z_i$$
Integers specifying the homology of the visible sector 3-cycle

• Use the expressions for the F-terms to compute

$$M_{1/2} \approx -\frac{e^{-i\gamma_W}}{P_{eff}} \left(1 + \frac{2}{\phi_c^2 (M - P)} + \frac{\delta}{P_{eff}} \right) \times m_{3/2}$$

• The tree-level gaugino mass is always suppressed for the entire class of dS vacua obtained in our model

$$V_0 = 0 \& M - P = 3 \Rightarrow P_{eff} \approx 61.65$$

 $\Rightarrow M_{1/2} \approx -e^{-i\gamma_W} (0.031 + 0.00026 \times \delta) \times m_{3/2}$

- Depending on N_i^{sm} we find typically $|\delta| \le O(1-10)$
- Vary $61 \le P_{eff} \le 62 \Rightarrow -O(m_{3/2}m_{pl})^2 < V_0 < +O(m_{3/2}m_{pl})^2$
- However, $M_{1/2}$ stays virtually inert!

Anomaly mediated gaugino masses:

Gaillard et. al.: hep-th/09905122, Bagger et. al.: hep-th/9911029

$$(M)_a^{am} = -\frac{g_a^2}{16\pi^2} \left[-\left(3C_a - \sum_{\alpha} C_a^{\alpha}\right) e^{\hat{K}/2} \overline{W} + \left(C_a - \sum_{\alpha} C_a^{\alpha}\right) e^{\hat{K}/2} F^m K_m + 2\sum_{\alpha} C_a^{\alpha} e^{\hat{K}/2} F^m \partial_m \ln \widetilde{K}_{\alpha} \right]$$

• Use
$$\ln \tilde{K}_{\alpha} \approx \frac{1}{3} \hat{K} + (c-1)\kappa(s_{i}) \frac{\phi \overline{\phi}}{3V_{7}} + const$$

$$(M)_{a}^{am} \approx -\frac{\alpha_{GUT}}{4\pi} \left[-\left(3C_{a} - \sum_{\alpha} C_{a}^{\alpha}\right) \left(1 - \frac{1}{3} \left(1 + \frac{2}{(M-P)\phi_{c}^{2}}\right) \left(\phi_{c}^{2} + \frac{7}{P_{eff}}\right)\right) + (c-1)\left(1 + \frac{2}{(M-P)\phi_{c}^{2}}\right) \frac{2\phi_{c}^{2}}{3} \sum_{\alpha} C_{a}^{\alpha} e^{-i\gamma_{w}} \times m_{3/2}$$

• In the limit $c \to 1$ Konishi anomaly contribution vanishes. In this case we obtain a particular example of mirage pattern for gaugino masses

- Assume a SUSY GUT broken to MSSM
- Require zero CC at tree-level and M-P=3 to obtain tree-level plus anomaly gaugino masses:

$$\begin{split} M_1 &\approx e^{-i\gamma_w} \left(-(0.031 + 0.00026 \times \delta) \eta + \alpha_{GUT} \left(-0.225 + 0.523 (1-c) \right) \right) \times m_{3/2} \\ M_2 &\approx e^{-i\gamma_w} \left(-(0.031 + 0.00026 \times \delta) \eta + \alpha_{GUT} \left(-0.034 + 0.555 (1-c) \right) \right) \times m_{3/2} \\ M_3 &\approx e^{-i\gamma_w} \left(-(0.031 + 0.00026 \times \delta) \eta + \alpha_{GUT} \left(0.102 + 0.476 (1-c) \right) \right) \times m_{3/2} \end{split}$$

- From KK threshold corrections $\eta = 1 \frac{5g_{GUT}^2}{8\pi^2} \tau_{\omega}$ Friedmann and Witten, hep-th/0211269
- Ray-Singer torsion $\tau_{\omega} = \ln(4\sin^2(5\pi w/q))$
- $\alpha_{GUT} \approx 1/25$ is fixed from gauge coupling unification
- For the case when c=0, the Konishi anomaly is large such that the tree-level and anomaly partially cancel

• μ - problem

in superpotential from Kahler potential (Giudice-Masiero) physical $\mu = \left(\frac{\overline{W}}{|W|}e^{\hat{K}/2}\mu' + m_{3/2}Z - e^{\hat{K}/2}F^{\overline{m}}\partial_{\overline{m}}Z\right)(\widetilde{K}_{H_u}\widetilde{K}_{H_d})^{-1/2} \text{ Invariant under } \mathbf{F}$ where $Z(z_i, \overline{z}_i, \phi, \overline{\phi})$ originates from $\delta\widetilde{K} = Z(z_i, \overline{z}_i, \phi, \overline{\phi})H_uH_d + h.c.$

- μ -parameter can vanish if the G_2 manifold has a discrete symmetry **F**. Also used to solve the doublet-triplet splitting problem Witten, hep-ph/0201018
- Since $Z(z_i, \bar{z}_i, \phi, \bar{\phi})$ is unknown $\mu \equiv Z_{eff}^1 m_{3/2}, B\mu \equiv Z_{eff}^2 m_{3/2}^2$
- If $Z_{eff}^{1,2} \sim O(1)$ then typically expect $\mu \sim O(m_{3/2})$
- Heavy higgsinos and $\tan \beta \sim O(1)$

From Higgs-Higgsino loops, at the weak scale get an extra contribution to M_1 and M_2 .

Pierce, et.al, hep-ph/9606211; Gherghetta et.al, hep-ph/9904378; Arkani-Hamed, et.al hep-ph/0601041

$$\Delta M_{1,2} \approx \frac{\alpha_{1,2}}{4\pi} \frac{\mu \sin(2\beta)}{\left(1 - \frac{\mu^2}{m_A^2}\right)} \ln \frac{\mu^2}{m_A^2} \approx \frac{\alpha_{1,2}}{4\pi} \mu = \frac{\alpha_{1,2}}{4\pi} Z_{eff}^1 m_{3/2}$$

used that $\tan \beta \approx O(1)$ and $\frac{\mu^2}{m_A^2} \approx 1$

When $\mu \sim O(1)m_{3/2}$, such contributions can change the type of the LSP, depending on the sign of μ !

• In $\mathcal{N}=1$ D=4 sugra, the unnormalized scalar masses:

$$m_{\alpha\overline{\beta}}^{\prime 2} \approx \widetilde{K}_{\alpha\overline{\beta}}(m_{3/2}^2 + V_0) - e^{\hat{K}} F^n \overline{F}^{\overline{m}}(\partial_n \partial_{\overline{m}} \widetilde{K}_{\alpha\overline{\beta}} - \partial_n \widetilde{K}_{\alpha\overline{\gamma}} \widetilde{K}^{\overline{\gamma}\delta} \partial_{\overline{m}} \widetilde{K}_{\delta\overline{\beta}})$$

• In our construction we obtain (using homogeneity)

$$m_{\alpha\overline{\beta}}^{\prime 2} \approx (1-c) \left(m_{3/2}^2 - \frac{7}{3} \left(m_{1/2}^{tree} \right)^2 \right) \widetilde{K}_{\alpha\overline{\beta}} \Longrightarrow m_{\alpha} \approx (1-c)^{1/2} m_{3/2}$$

- For generic values of c the scalars are very heavy
- Tree-level mass vanishes in the limit C=1-get tachyons in the scalar spectrum.
- We restrict our analysis to the values of c when

$$\frac{1}{16\pi^2} << \frac{m_\alpha}{m_{3/2}}$$

• Trilinear couplings:

$$\begin{split} A_{\alpha\beta\gamma}^{tree} &= \frac{\overline{W}}{|W|} e^{\hat{K}/2} F^m \Big(K_m Y_{\alpha\beta\gamma}' + \partial_m Y_{\alpha\beta\gamma}' - \Big(\widetilde{K}^{\delta\overline{\rho}} \partial_m \widetilde{K}_{\overline{\rho}\alpha} Y_{\delta\beta\gamma}' + (\alpha \Longleftrightarrow \beta) + (\alpha \Longleftrightarrow \gamma) \Big) \Big) \\ Y_{\alpha\beta\gamma}^{i} &= C_{\alpha\beta\gamma} e^{\sum_{i=1}^{N} m_i^{\alpha\beta\gamma} z_i} \quad \text{Membrane instanton volume:} \quad V_{Q^{\alpha\beta\gamma}} &= \sum_{i=1}^{N} m_i^{\alpha\beta\gamma} s_i \\ \widetilde{A}_{\alpha\beta\gamma}^{tree} &= \frac{A_{\alpha\beta\gamma}^{tree}}{Y_{\alpha\beta\gamma}'} \approx m_{3/2} e^{-i\gamma_W} \bigg(1 + \frac{2}{(M-P)\phi_c^2} \bigg) \bigg((1-c)\phi_c^2 + \frac{4\pi}{P_{eff}} V_{Q^{\alpha\beta\gamma}} \bigg) \end{split}$$

Anomaly:
$$\tilde{A}_{a}^{AM} = -\frac{1}{16\pi^{2}} \gamma_{a} \left(e^{\hat{K}/2} \overline{W} - \frac{1}{3} e^{\hat{K}/2} F^{n} K_{n} \right) + \frac{(1-c)}{16\pi^{2}} X_{a} m_{3/2}$$
Gaillard-Nelson. hep-th/0004170

$$\begin{split} \widetilde{A}_{t}^{AM} &\approx -\frac{e^{-i\gamma_{w}}}{16\pi^{2}} \left(-\frac{46}{5} g_{GUT}^{2} + 6Y_{t}^{2} + Y_{b}^{2} \right) \left(1 - \frac{1}{3} \left(1 + \frac{2}{(M - P)\phi_{c}^{2}} \right) \left(\phi_{c}^{2} + \frac{7}{P_{eff}} \right) \right) m_{3/2} \\ \widetilde{A}_{b}^{AM} &\approx -\frac{e^{-i\gamma_{w}}}{16\pi^{2}} \left(-\frac{44}{5} g_{GUT}^{2} + Y_{t}^{2} + 6Y_{b}^{2} + Y_{\tau}^{2} \right) \left(1 - \frac{1}{3} \left(1 + \frac{2}{(M - P)\phi_{c}^{2}} \right) \left(\phi_{c}^{2} + \frac{7}{P_{eff}} \right) \right) m_{3/2} \\ \widetilde{A}_{\tau}^{AM} &\approx -\frac{e^{-i\gamma_{w}}}{16\pi^{2}} \left(-\frac{24}{5} g_{GUT}^{2} + 3Y_{b}^{2} + 4Y_{\tau}^{2} \right) \left(1 - \frac{1}{3} \left(1 + \frac{2}{(M - P)\phi_{c}^{2}} \right) \left(\phi_{c}^{2} + \frac{7}{P_{eff}} \right) \right) m_{3/2} \end{split}$$

• Total trilinear couplings for M-P=3 and zero CC:

$$\widetilde{A}_{t} \approx e^{-i\gamma_{w}} \left(1.5(1-c) - 0.003 \left(-\frac{46}{5} g_{GUT}^{2} + 6Y_{t}^{2} + Y_{b}^{2} \right) \right) \times m_{3/2}$$

$$\widetilde{A}_{b} \approx e^{-i\gamma_{w}} \left(1.5(1-c) - 0.003 \left(-\frac{44}{5} g_{GUT}^{2} + Y_{t}^{2} + 6Y_{b}^{2} + Y_{\tau}^{2} \right) \right) \times m_{3/2}$$

$$\widetilde{A}_{\tau} \approx e^{-i\gamma_{w}} \left(1.5(1-c) - 0.003 \left(-\frac{24}{5} g_{GUT}^{2} + 3Y_{b}^{2} + 4Y_{\tau}^{2} \right) \right) \times m_{3/2}$$

- We assumed that the third generation Yukawas arise from colliding singularities and thus dropped the volume terms

 Friedmann and Witten, hep-th/0211269

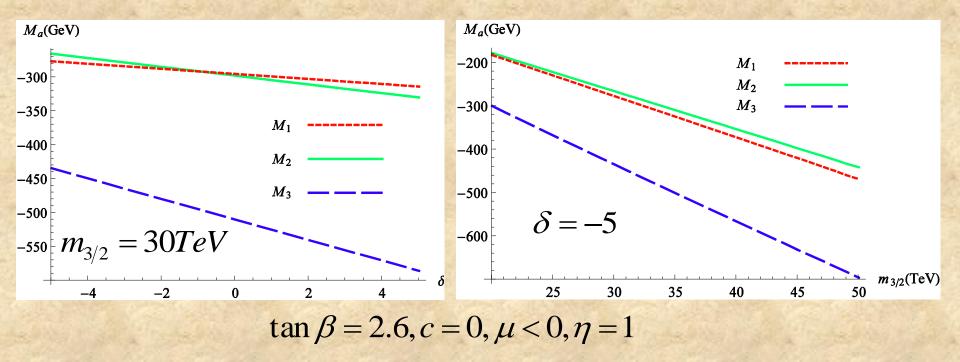
 Atiyah-Witten, hep-th/0107177
- For generic values of 0 < c < 1: $\widetilde{A}_{t,b,\tau} \sim O(1) \times m_{3/2}$

Electroweak Symmetry Breaking

- In most models REWSB is accommodated but not predicted, i.e. one picks $\tan \beta$ and then finds μ , which give the experimental value of M_Z
- Recall $\mu \equiv Z_{eff}^1 m_{3/2}, B\mu \equiv Z_{eff}^2 m_{3/2}^2$
- Radiative EWSB is generic in our construction for a large range of values $0.1 < Z_{eff}^{1,2} < 3$
- However, generically get $M_Z \sim O(m_{3/2})$
- Getting $M_Z \approx 91 GeV$ requires fine tuning up to 0.01% level

Gaugino masses at the EW scale

(generated by SOFTSUSY package)



- Pure Wino LSP is rapidly excluded as c is increased
- For typical values 0 < c < 1 get pure Bino LSP
- In the limit c=1, for large $\tan \beta$ can have light higgsinos mixing with gauginos

Benchmark spectra (masses are in GeV)

GUT scale input

					American Company		
$m_{3/2}$	20000	20000	20000	20000	30000	50000	30000
δ	-5	-3	0	-5	5	-5	-5
C	0	0	0	0.1	0.5	1/2	0
$\tan \beta$	3	2.65	2.65	3	3	2.5	3
μ	-12023	-13430	-13468	-11041	-10367	-33962	+17578
LSP	Wino	W+B	Bino	Bino	Bino	Wino	Bino
M_1	182	188	195	200	446	464	275
M_2	179	189	201	212	578	428	262
M_3	307	330	359	377	1113	663	429
$m_{\widetilde{g}}$	463	495	535	558	1518	987	645
$m_{\widetilde{\chi}_1^0}$	168.7	173.7	181	189	434	381.2	294
$m_{ ilde{\chi}^0_2}$	170	174	188	207	611	426	357
$m_{\chi_1^\pm}$	168.8	174	188	207	611	381.4	357
$m_{\widetilde{t}_1}$	9077	8740	8711	8884	11191	22878	14213
$m_{\widetilde{b}_1}$	15325	15241	15234	14625	16788	38479	23233
m_h	116.6	114.3	114.5	116.2	115.7	114.7	114.5

Approximately sequestered limit

- Express $c = 1 \left(\frac{m_{\alpha}}{m_{3/2}}\right)^2$. GUT scale input: $m_{3/2}, m_{\alpha}, \eta, \delta$, $\tan \beta$ Can set $\eta = 1$
- Recast the soft terms as

$$\begin{split} M_{1} &\approx e^{-i\gamma_{w}} m_{3/2} \Big(-(0.031 + 0.00026 \times \delta) \eta + \alpha_{GUT} \Big(-0.225 + 0.523 (m_{\alpha} / m_{3/2})^{2} \Big) \Big) \\ M_{2} &\approx e^{-i\gamma_{w}} m_{3/2} \Big(-(0.031 + 0.00026 \times \delta) \eta + \alpha_{GUT} \Big(-0.034 + 0.555 (m_{\alpha} / m_{3/2})^{2} \Big) \Big) \\ M_{3} &\approx e^{-i\gamma_{w}} m_{3/2} \Big(-(0.031 + 0.00026 \times \delta) \eta + \alpha_{GUT} \Big(0.102 + 0.476 (m_{\alpha} / m_{3/2})^{2} \Big) \Big) \\ \widetilde{A}_{t} &\approx e^{-i\gamma_{w}} m_{3/2} \Big(1.5 (m_{\alpha} / m_{3/2})^{2} - 0.003 (-(46/5) g_{GUT}^{2} + 6Y_{t}^{2} + Y_{b}^{2}) \Big) \\ \widetilde{A}_{b} &\approx e^{-i\gamma_{w}} m_{3/2} \Big(1.5 (m_{\alpha} / m_{3/2})^{2} - 0.003 (-(44/5) g_{GUT}^{2} + Y_{t}^{2} + 6Y_{b}^{2} + Y_{\tau}^{2}) \Big) \\ \widetilde{A}_{\tau} &\approx e^{-i\gamma_{w}} m_{3/2} \Big(1.5 (m_{\alpha} / m_{3/2})^{2} - 0.003 (-(24/5) g_{GUT}^{2} + 3Y_{b}^{2} + 4Y_{\tau}^{2}) \Big) \end{split}$$

• Used SOFTSUSY to get the EW scale spectrum and then fed the output into micrOMEGAs to get the thermal relic density

Approximately sequestered limit (δ =2, η =1, all masses are in GeV)

P	oint	1	2	3	4	5	6
1	$n_{3/2}$	8000	16000	16000	16000	30000	50000
1	n_{α}	800	800	800	1200	2000	2000
	$\ln \beta$	42.00	43.00	38.00	42.80	43.10	37.80
M	I_{GUT}	2.6×10^{16}	2.0×10^{16}	2.0×10^{16}	2.0×10^{16}	1.7x10 ¹⁶	1.4x10 ¹⁶
	μ	297.2	532.9	538.1	516.7	847.3	1411.2
Ω	$a_c h^2$	0.114	0.115	0.118	0.116	0.112	0.115
Λ	M_1	134.1	274.7	274.5	275.6	530.2	898.4
Λ	M_2	203.9	413.4	412.8	413.5	784.0	1316.1
Λ	M_3	505.2	980.8	979.4	970.2	1746.2	2840.4
	$n_{\widetilde{g}}$	574.2	1053.2	1053.8	1072.5	1909.7	3008.0
1	$n_{\widetilde{\chi}_1^0}$	130.2	270.8	270.7	272.1	525.8	891.1
1	$n_{\widetilde{\chi}^0_2}$	193.8	408.3	409.3	408.8	779.4	1327.2
1	$n_{\widetilde{\chi}^0_3}$	308.1	539.4	545.2	524.3	854.9	1419.4
1	$n_{\widetilde{\chi}^0_4}$	332.0	562.7	567.5	551.0	896.4	1456.2
1	$n_{\widetilde{\chi}_1^{\pm}}$	194.6	412.1	412.9	411.6	781.5	1333.3
1	$n_{\widetilde{\chi}_2^{\pm}}$	330.6	558.9	564.3	547.6	891.1	1450.6
, 1	$n_{\widetilde{s}_L}$	924.4	1223.8	1223.3	1499.7	2571.4	3326.5
, 1	$n_{\widetilde{c}_L}$	920.2	1219.3	1218.6	1495.7	2566.3	3318.5

 $m_{\widetilde{u}_{I}}$

	$m_{\widetilde{b}_1}$	667.1	929.0	974.8	1125.9	1980.7	2756.8
	$m_{\widetilde{t}_1}$	577.6	838.1	840.9	986.4	1737.4	2379.8
$m_{\widetilde{e}_L}$	$,m_{\widetilde{\mu}_L}$	818.0	875.5	875.3	1248.7	2101.1	2277.5
$m_{\widetilde{v}_{e_L}}^{e_L}$	$,m_{\widetilde{ u}_{\mu_L}}$	814.0	872.0	871.8	1246.2	2100.1	2277.3
	$m_{\widetilde{ au}_1}$	669.0	688.9	722.5	1011.6	1699.8	1868.5
	$m_{\widetilde{v}_{ au_L}}$	749.0	807.9	821.8	1148.5	1939.2	2158.3
$m_{\widetilde{d}_R}$	$,m_{\widetilde{s}_R}$	912.8	1184.9	1184.5	1470.5	2512.0	3192.1
$m_{\widetilde{u}_R}$	$,m_{\widetilde{c}_{n}}$	914.9	1194.5	1193.9	1477.8	2527.2	3225.6
	$m_{\widetilde{b}_2}$	733.7	992.0	1032.1	1193.2	2060.8	2813.1
	$m_{\widetilde{t}_2}$	714.8	1003.1	1026.6	1164.8	2004.4	2781.8
$m_{\widetilde{e}_R}$	$,m_{\widetilde{\mu}_R}$	809.2	835.9	836.0	1223.4	2048.4	2134.5
	$m_{\widetilde{ au}_2}$	755.4	816.3	829.7	1152.5	1940.2	2159.6
	m_{h_0}	111.4	115.0	115.1	115.7	119.3	121.7
	m_{H_0}	426.5	444.6	637.3	653.3	1140.7	1774.5
	m_{A_0}	426.4	444.6	637.2	653.2	1140.6	1774.5
	$m_{H^{\pm}}$	435.4	452.6	642.4	658.4	1143.4	1775.8
	\widetilde{A}_{t}	445.5	810.5	830.3	829.5	1485.9	2397.4
	$\widetilde{\widetilde{A}}_{b}$	561.2	954.2	1079.2	1014.4	1811.7	3112.4
	$\widetilde{A}_{ au}$	159.9	192.7	272.2	257.2	473.0	864.9

Conclusions

- Generalized the previous construction by relying only on the most basic property of the bulk Kahler potential
- Presented a very general form of the Kahler potential for chiral matter and used it in the construction
- All moduli are stabilized by the potential generated by the strong gauge dynamics in the hidden sector. The superpotential is very simple, contains only two terms!
- Supersymmetry is broken spontaneously via F-terms (no antibranes are needed for uplifting)

- Constrained $m_{3/2} \sim O(10) \text{ TeV}$ from CC=0
- Demonstrated via explicit computations that the soft breaking terms are independent of the detailed microscopic structure of the Kahler potential
- Gauginos are always light: $M_{1.2.3} \sim O(100-1000) \text{ GeV}$
- Gauge coupling unification and REWSB are generic
- The little hierarchy problem leads to 0.01% tuning
- Typical spectrum: light gauginos and heavy scalars and higgsinos, Bino LSP is generic but can be Wino
- Approximately sequestered limit all superpartners are light. For $28 < \tan \beta < 43$ the LSP can have a large higgsino component

Related work

• Found a robust solution to the Strong CP problem and realization of the String Axiverse, (Piyush's talk)

(K.B. with Bobby Acharya and Piyush Kumar; hep-th/1004.5138)

• Constructed a new class of compactifications in Type IIB on CY orientifolds, completely analogous to the M-theory models described here. Found explicit CY examples that implement the idea. (K.B with Volker Braun, Piyush Kumar and Stuart Raby: hep-th 1003.1982)

Things to do in the future

- Find a good argument/derivation for sequestering
- Yukawa couplings and neutrino masses
- Inflation (probably need to know the details of $V_7(s_i)$)