Moduli Stabilization and SUSY Breaking Heterotic Orbifolds

Ben Dundee The Ohio State University PASCOS 2009

> with Stuart Raby and Alexander Westphal arxiv:1002.1081 (hep-th)

This talk

- EFTs from heterotic orbifold compactifications
- Stabilizing moduli in anti-de Sitter minima
- A Simple Model: Stabilizing moduli in (nearly) Minkowski vacua
- Low energy physics (if time---I hope so!)

EFTs from Heterotic Orbifolds

$$E_8 \otimes E_8 \to MSSM \otimes stuff$$

- Breaking such a large gauge group leaves lots of extra stuff to play with:
 - Extra gauge groups Rank 16-4 = 12
 - Lots of (non-Abelian) singlets!
 - Typically, lots of U(1)s as well (...generally broken by singlet VEVS)
 - A single anomalous, U(1)_A. Anomaly canceled by Green-Schwarz mechanism.
 - Superpotential is specified to all orders by string selection rules.

An Example: Mini-Landscape 1 (ML1)

$E_8 \otimes E_8 \to MSSM \otimes SU_4 \otimes SU_2 \otimes [U_1]^8$

Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, '07

✓ Good Hypercharge
 ✓ MSSM spectrum
 ✓ Exotics decouple
 ✓ F=D=0 solutions exist
 ✓ Heavy top
 ✓ Unification

BD, Raby, Wingerter, '08

 $T^6/\mathbb{Z}_6 - \Pi$

I will use this model as an example in what follows.

An Example: Mini-Landscape 1 (ML1)

BD, Raby,

Wingerter, '08

FIG. 2: As in Fig. 1 but with models of Step 8 in the foreground.

Other heterotic models have QCDs, too...

Dienes and Lennek, hep-th/0610319

group	finite sample	extracted Ω_{α}
U_1	99.94	95.6
SU_2	97.44	98.2
SU_3	47.84	97.6
SU_4	51.04	29.5
SU_5	7.36	41.6
$SU_{>5}$	6.60	1.72
SO_8	13.75	1.53
SO_{10}	4.83	0.21
$SO_{>10}$	2.69	0.054
$E_{6,7,8}$	0.27	0.023

QCDs in the hidden sector seem to be very generic

Table 1: Percentage of four-dimensional $\mathcal{N} = 1$ supersymmetric heterotic string models containing various gauge-group factors at least once in their total gauge groups. Here $SU_{>5}$ indicates the appearance of any SU(n > 5) factor, while $SO_{>10}$ indicates any SO(2n)group with $n \ge 6$ and $E_{6,7,8}$ signifies any of the 'E' groups. For each gauge-group factor, the 'sample' column indicates to the percentages of models exhibiting this factor across our sample of more than one million distinct models in this class. By contrast, the Ω_{α} column lists the corresponding values to which these percentages would "float", as extracted through Eqs. (4.7) and/or (4.9). It is clear that correcting for such probability deformations can result in abundances which are markedly different from those which appear within a finite sample.

Dundee, SVP2010

The Moduli in Heterotic Orbifolds

- S (dilaton) sets GUT coupling constant
- T and U (volume and shape moduli) parameterize the compact dimensions
- Other singlets, including:
 - "Blow up modes": states living at orbifold fixed points which have nonzero (left-moving) oscillator number
 - Other MSSM singlets: may carry charges under extraneous U(1)'s, and set yukawa couplings, etc.

The dilaton

$$\mathcal{L} \supset \frac{\langle S \rangle}{M_{\rm PL}} F_{\mu\nu} F^{\mu\nu}$$

$$\Rightarrow \langle S \rangle \sim \mathcal{O} (M_{\rm PL})$$
A dimension five operator sets the gauge coupling constants in string theory. Without someway to give S a VEV, we won't have a good Yang-Mills sector!

Barring large threshold corrections, we need ~~-2.~~

Moduli can be stabilized by radiative corrections once SUSY is broken, as the NR theorems no longer apply. This suggests :

 $\langle S \rangle \sim \Lambda_{SUSY}$

For the dilaton, which sets the gauge coupling, this implies:

 $\Lambda_{SUSY} \sim M_{\rm PL}$

Geometric Moduli in Orbifold Compactifications

$$T \equiv \ell_1 \ell_2 \cos \theta$$

$$U \equiv \frac{\ell_2}{\ell_1} \sin \theta$$

$$T = 0$$

$$T = \ell_1 \ell_2 \cos \theta$$

$$T = \frac{\ell_2}{\ell_1} \sin \theta$$

$$T = 0$$

Dundee, SVP2010

An Example: Mini-Landscape 1 (ML1)

The superpotential inherits these symmetries from the UV physics...

$$\left(\mathcal{W} \to \prod_{i} (c_i T^i + i d_i) \mathcal{W}\right)$$

Dundee, SVP2010

Raw Materials: mini-landscape EFT's

- One or more QCD-like hidden sector. (Typically <u>one</u>, but possibly more?)
- Tons o' singlets
- Tons o' U(1)'s with one possibly (probably) anomalous
- F=D(=W)=0 solutions exist in the global limit (S and T dependence of W not considered)
- Modular invariance of W dictates T (and, in principle, U) dependence
- Dilaton VEV sets gauge coupling

Stabilizing Moduli

Stabilizing the Dilaton in an AdS minimum

Stabilizing T and U: Font, Ibanez, Lust and Quevedo

Modular Invariance implies a very specific form of W...

$$\mathcal{W}(S,T) = \frac{e^{-aS} + w_0}{\eta(T)^6}$$
 Dedekind eta function

14

Stabilizing T and U: Font, Ibanez, Lust and Quevedo

Modular Invariance implies a very specific form of W...

Stabilizing T and U: Font, Ibanez, Lust and Quevedo

Modular Invariance implies a very specific form of W...

The problem is that the minima are anti-de Sitter:

$$\frac{V_0}{3m_{3/2}^2} \sim -0.8$$

The Good News and the Bad News

- A single gaugino condensate (+ w₀) can stabilize the dilaton (S)
- Modular invariance can stabilize T and U: $\eta(T) \approx e^{\frac{-\pi T}{12}} + \mathcal{O}(e^{-2\pi T})$

We always end up in an anti-de Sitter vacuum!

The Good News and the Bad News

- A single gaugino condensate (+ w₀) can stabilize the dilaton (S)
- Modular invariance can stabilize T and U: $\eta(T) \approx e^{\frac{-\pi T}{12}} + \mathcal{O}(e^{-2\pi T})$

We always end up in an anti-de Sitter vacuum!

$$\mathcal{K}_{\mathrm{M}} = -\log(S+ar{S}) - 3\log(T+ar{T})$$

Heterotic SQCD with mass terms

$$\begin{split} \mathcal{W}_{\rm NP} &= \mathcal{M}(\phi, T) Q \tilde{Q} + (N_c - N_f) \left(\frac{\Lambda^{3N_c - N_f}}{\det Q \tilde{Q}} \right)^{\frac{1}{N_c - N_f}} \\ \mathcal{M}(\phi, T) &= \eta(T)^{\gamma_T} \phi^r \approx e^{\frac{\gamma_T \pi}{12}} \phi^r \end{split} \text{ a la Affleck, Dine, Seiberg...} \\ \Lambda_{\rm SQCD} \sim e^{\frac{-8\pi^2}{b_{\rm SQCD}} \frac{1}{g^2}} \frac{1}{g^2} \frac{1}{g^2} \left(\frac{1}{g^2} = \langle S \rangle \text{ to leading order!} \right)^{\frac{1}{N_c - N_f}} \end{split}$$

Strategy: Integrate out all of the flavors and work in the pure gauge limit.

Heterotic SQCD with mass terms

$$\mathcal{W}_{\rm NP} = \mathcal{M}(\phi, T)Q\tilde{Q} + (N_c - N_f) \left(\frac{\Lambda^{3N_c - N_f}}{\det Q\tilde{Q}}\right)^{\frac{1}{N_c - N_f}}$$
$$\mathcal{W}_{\rm NP}(S, T, \phi) = N_c \left(\phi^r e^{\frac{\gamma_T \pi}{12}}\right)^{N_f/N_c} e^{\frac{-8\pi^2}{N_c}S}$$

A Model: Singlet superpotential

$$\mathcal{W}_{\text{SINGLET}} = \chi \left(\phi_1^{10} + \lambda \phi_1 \phi_2^2 \right)$$

$$\langle \chi \rangle = 0,$$

 $\langle \phi_1 \rangle = 0,$
 $\langle \phi_2 \rangle = \text{arbitrary}$
Note that we have a
SUSY vacuum for
these singlet VEVS

$$\Longrightarrow$$
 In this (SUSY) vacuum, $\langle \mathcal{W}_{\text{SINGLET}}
angle = 0$

A Model: FI D Term

$$20 |\chi|^{2} - 2 |\phi_{1}|^{2} - 9 |\phi_{2}|^{2} = \xi$$
$$\langle \chi \rangle = 0,$$
$$This solution now$$
satisfies
$$\xi \phi_{2} \rangle = \sqrt{\frac{\xi}{9}}.$$
$$F = D = 0.$$

A Model: Scorecard

$20 |\chi|^2 - 2 |\phi_1|^2 - 9 |\phi_2|^2 = \xi$ $\checkmark SUSY QCD in hidden Sector$ $\checkmark Anomalous U(1)$ $\checkmark F=D=0 \text{ solutions exist}$ $\checkmark W=0 \text{ in the NP limit}$

Generating w_0

$$\mathcal{W}_{\text{SINGLET}} = \chi \left(\phi_1^{10} + \lambda \phi_1 \phi_2^2 \right)$$

The singlet superpotential is calculated to some finite order, and has an (approximate) R symmetry:

$$R(\chi) = 2$$
$$R(\phi_1) = R(\phi_2) = 0.$$

Generating w_0

$$\mathcal{W}_{\text{SINGLET}} = \chi \left(\phi_1^{10} + \lambda \phi_1 \phi_2^2 \right)$$

The singlet superpotential is calculated to some finite order, and has an (approximate) R symmetry:

$$R(\chi) = 2$$
$$R(\phi_1) = R(\phi_2) = 0.$$

Explicitly broken R symmetries are a <u>generic feature</u> of the heterotic models, and can generate w₀:

$$\mathcal{W}_0 = e^{-bT} w$$

Kappl, et al., arXiv:0812.2120(hep-th)

A Specific Model

$$\mathcal{W} \sim \left(A\phi^{p}e^{-aS}\right)e^{-b_{2}T} + w_{0}e^{-bT}$$
$$a = \frac{8\pi^{2}}{5} \qquad b = \frac{8}{125} \qquad b_{2} = \frac{29\pi}{20}$$
$$A = 45 \qquad r = 15p \qquad p = \frac{2}{5}$$
$$w_{0} = 62 \times 10^{-16}$$

$$\mathcal{W} \sim \left(A\phi^{p}e^{-aS}\right)e^{-b_{2}T} + w_{0}e^{-bT}$$
$$\langle s \rangle \approx 2.0 \qquad \langle t \rangle \approx 1.7$$
$$\langle \sigma \rangle \approx 1.0 \qquad \langle \phi_{2} \rangle \approx 0.08$$
$$\langle \chi \rangle = \langle \phi_{1} \rangle = 0$$

 $F_S \approx -3.3 \times 10^{-16}$ $F_T \approx 4.7 \times 10^{-15}$ $F_{\phi_2} \approx 1.0 \times 10^{-16}$

Can check that all other singlets are stabilized after SUSY breaking (see paper)

$$\mathcal{W} \sim \left(A\phi^{p}e^{-aS}\right)e^{-b_{2}T} + w_{0}e^{-bT}$$

$$\langle s \rangle \approx 2.0 \qquad \langle t \rangle \approx 1.7$$

$$\langle \sigma \rangle \approx 1.0 \qquad \langle \phi_{2} \rangle \approx 0.08$$

$$\langle \chi \rangle = \langle \phi_{1} \rangle = 0$$

$$F_{S} \approx -3.3 \times 10^{-16} \qquad F_{T} \approx 4.7 \times 10^{-15} \qquad F_{\phi_{2}} \approx 1.0 \times 10^{-16}$$

$$\mathcal{W} \sim \left(A\phi^{p}e^{-aS}\right)e^{-b_{2}T} + w_{0}e^{-bT}$$

$$\langle s \rangle \approx 2.0 \qquad \langle t \rangle \approx 1.7$$

$$\langle \sigma \rangle \approx 1.0 \qquad \langle \phi_{2} \rangle \approx 0.08$$

$$\langle \chi \rangle = \langle \phi_{1} \rangle = 0$$

$$F_{S} \approx -3.3 \times 10^{-16} \qquad F_{T} \approx 4.7 \times 10^{-15} \qquad F_{\phi_{2}} \approx 1.0 \times 10^{-16}$$

SUSY breaking "mostly" from T...

$$\mathcal{W} \sim \left(A\phi^{p}e^{-aS}\right)e^{-b_{2}T} + w_{0}e^{-bT}$$

$$\langle s \rangle \approx 2.0 \qquad (t) \approx 1.7$$

$$\langle \sigma \rangle \approx 1.0 \qquad \langle \phi_{2} \rangle \approx 0.08$$

$$\langle \chi \rangle = \langle \phi_{1} \rangle = 0$$

$$F_{S} \approx -3.3 \times 10^{-16} \qquad F_{T} \approx 4.7 \times 10^{-15} \qquad F_{\phi_{2}} \approx 1.0 \times 10^{-16}$$

SUSY breaking "mostly" from T...

$$\mathcal{W} \sim \left(A\phi^{p}e^{-aS}\right)e^{-b_{2}T} + w_{0}e^{-bT}$$

$$\langle s \rangle \approx 2.0 \qquad \langle t \rangle \approx 1.7 \qquad \neq 1.234...$$

$$\langle \sigma \rangle \approx 1.0 \qquad \langle \phi_{2} \rangle \approx 0.08$$

$$\langle \chi \rangle = \langle \phi_{1} \rangle = 0$$

$$F_{S} \approx -3.3 \times 10^{-16} \qquad F_{T} \approx 4.7 \times 10^{-15} \qquad F_{\phi_{2}} \approx 1.0 \times 10^{-16}$$

SUSY breaking "mostly" from T...

An Interesting Potential: b > 0

Low Energy Observables

- Derive soft masses (Brignole, Ibanez, Munoz; Minetruy, Gaillard, Nelson)
- Run with SoftSUSYv3.1 (Allanach)
- Check other observables (FCNC, EW precision obs., WMAP data, etc.) with micrOMEGASv2.1 (Belanger, Boudjema, Pukhov, Semenov)
 - Les Houches accords make interface easy!

ML1A as an example

Low Energy Observables

Gravity mediation contribution set by gravitino mass...

 $m_{3/2} \approx 1 \text{ TeV}$

Gaugino masses given by dilaton F term...

 $M_a \approx 253 \,\,\mathrm{GeV}$

A terms are non-universal (some assumption req'd.)

Low Energy Observables: Scalar Masses

Gravity mediation contribution set by gravitino mass, but also a D term contribution!

$egin{array}{c} m_{H^u} \ m_{H^d} \end{array}$	237 247		
	Gen. 1,2	Gen. 3	
$m_{ ilde{q}}$	762	1051	
$m_{ ilde{u}^c}$	762	1050	
$m_{ ilde{d}^c}$	761	1051	
$m_{ ilde{\ell}}$	761	1050	
$m_{ ilde{e}^c}$	762	1050	

	Observable			
co	$m_{3/2}$	1049	-0	
out	aneta	25	SUC	$m_{ ilde{u}_1}$
Int	$\operatorname{sgn}(\mu)$	_	pte	$m_{\tilde{u}_{c}}$
	n_1, n_2, n_3	$0,\!0,\!0$	Sle	$m_{\tilde{i}}$
	$\mu(M_{ m SUSY})$	-1391	s/s	m_{d_1}
B	m_{h^0}	112.9	ark	m_{d_2}
M	m_{H^0}	1224	3n6	$m_{ ilde{e}_1}$
Ē	m_{A^0}	1242	Ň	$m_{ ilde{e}_2}$
	m_{H^+}	1245		$m_{\tilde{\nu}}$
t.	$m_{ ilde{\chi}_1^0}$	101		δho
Veu	$m_{ ilde{\chi}_2^0}$	197	lbs	$\delta(g -$
	$m_{ ilde{\chi}_3^0}$	1397	U L	$b \rightarrow s$
arg	$m_{ ilde{\chi}_4^0}$	-1398	ihei	$B_s \to \mu$
Ch	$m_{\tilde{\chi}_1^{\pm}}$	197	Oť	m_{LM}
	$m_{ ilde{\chi}_2^\pm}$	140		m_{nLM}

		L		
∞		Gen. 1,2	Gen. 3	
ON\$	$m_{ ilde{u}_1}$	921	114	
ept	$m_{ ilde{u}_2}$	914	782	
/Sle	$m_{ ilde{d}_1}$	924	737	
·ks/	$m_{ ilde{d}_2}$	911	1052	
luar	$m_{ ilde{e}_1}$	779	955	
Sq	$m_{ ilde{e}_2}$	766	1037	
	$m_{ ilde{ u}}$	774	1020	
	δho	6.4×10^{-10}	10^{-5}	
bs .	$\delta(g-2)_{\mu}$	$-5.5 \times$	10^{-10}	
\bigcirc	$b \rightarrow s \gamma$	2.5×1	10^{-4}	
her	$B_s \to \mu^+ \mu^-$	3.6×1	10^{-9}	
Ot	m_{LMM}	117		
	m_{nLMM}	215'	73	

	Observable			
S	$m_{3/2}$	1049		
out	aneta	25	SUC	$m_{ ilde{u}_1}$
Int	$\operatorname{sgn}(\mu)$	—	pte	$m_{\tilde{u}_{2}}$
	n_1, n_2, n_3	0,0,0	Sle	m ĩ
	$\mu(M_{ m SUSY})$	-1391	\sim	m_{d_1} m_{z}
B	m_{h^0}	112.9	ark	m_{d_2}
M	m_{H^0}	1224	du;	$m_{\tilde{e}_1}$
Ē	m_{A^0}	1242	Ň	$m_{ ilde{e}_2}$
	m_{H^+}	1245		$m_{\tilde{\nu}}$
ţ.	$m_{ ilde{\chi}_1^0}$	101		δho
Veu	$m_{ ilde{\chi}_2^0}$	197	lbs	$\delta(g-z)$
	$m_{ ilde{\chi}_3^0}$	1397	U L	$b \rightarrow s$
arg	$m_{ ilde{\chi}_4^0}$	-1398	ihei	$B_s \to \mu$
Ch	$m_{\tilde{\chi}_1^{\pm}}$	197	Oť	m_{LM}
	$m_{\tilde{\chi}_2^{\pm}}$	140		m_{nLM}

\mathbf{v}		Gen. 1,2	Gen. 3
ON:	$m_{ ilde{u}_1}$	921	114
ept	$m_{ ilde{u}_2}$	914	782
/Sle	$m_{ ilde{d}_1}$	924	737
·ks/	$m_{ ilde{d}_2}$	911	1052
uar	$m_{ ilde{e}_1}$	779	955
Sq	$m_{ ilde{e}_2}$	766	1037
	$m_{ ilde{ u}}$	774	1020
	δho	6.4×10^{-10}	10^{-5}
bs .	$\delta(g-2)_{\mu}$	$-5.5 \times$	10^{-10}
\bigcirc	$b \rightarrow s \gamma$	2.5×10^{-10}	10^{-4}
Other	$B_s \to \mu^+ \mu^-$	3.6×10^{-10}	10^{-9}
	m_{LMM}	117	
	m_{nLMM}	215'	73

	Observable						
S	$m_{3/2}$	1049				Gen. 1,2	Gen.
out	$\tan \beta$	25		Ons	$m_{ ilde{u}_1}$	921	114
In]	$\operatorname{sgn}(\mu)$	—	4	ept.	$m_{ ilde{u}_2}$	914	782
	n_1, n_2, n_3	0,0,0	Ð	Sle	$m_{\tilde{d}_1}$	924	737
	$\mu(M_{\rm SUSY}) -1391$		XS/	$m_{\tilde{J}}$	911	105	
SB	m_{h^0}	112.9		arl	$m_{ ilde{a}_1}$	779	955
M	m_{H^0}	1224		nb	me_1 mz	766	103
	m_{A^0}	1242	C C	$\mathcal{O}_{\mathcal{I}}$	m_{e_2}	700 774	100
	m_{H^+}	1245			$\frac{\Pi \iota_{\tilde{\nu}}}{S}$		$\frac{102}{10-5}$
lt.	$m_{ ilde{\chi}_1^0}$	101			0ρ	$0.4 \times$	10°
Ver	$m_{ ilde{\chi}^0_2}$	197	7	90 00	$\delta(g-2)_{\mu}$	$-5.5 \times$	10^{-10}
arg./N	$m_{ ilde{\chi}_3^0}$	1397	(ר ב	$b \rightarrow s \gamma$	2.5×10^{-10}	10^{-4}
	$m_{ ilde{\chi}_4^0}$	-1398	-	he	$B_s \to \mu^+ \mu^-$	3.6×1	10^{-9}
Ch	$m_{\tilde{\chi}_1^{\pm}}$	197	Č] Č	m_{LMM}	11'	7
	$m_{\tilde{\chi}_2^{\pm}}$	140			m_{nLMM}	215'	73

Gen. 3

	Observable				
S	$m_{3/2}$	1049	-		
out	aneta	25		SUC	$m_{ ilde{u}_1}$
Inp	$\operatorname{sgn}(\mu)$	—		pto	$m_{\tilde{u}_2}$
	n_1, n_2, n_3	$0,\!0,\!0$		Sle	$m_{\tilde{s}}$
	$\mu(M_{ m SUSY})$	-1391		$\rm IS/S$	$m d_1$ m z
B	m_{h^0}	112.9		ark	m_{d_2}
M	m_{H^0}	1224		du	$m_{\tilde{e}_1}$
Ē	m_{A^0}	1242		Ñ	$m_{ ilde{e}_2}$
	m_{H^+}	1245			$m_{\tilde{\nu}}$
t.	$m_{ ilde{\chi}_1^0}$	101		•	δho
Veu	$m_{ ilde{\chi}_2^0}$	197		psd($\delta(g-z)$
arg./N	$m_{ ilde{\chi}^0_3}$	1397		L C	$b \rightarrow s$
	$m_{ ilde{\chi}_4^0}$	-1398		hei	$B_s \to \mu$
Ch	$m_{\tilde{\chi}_1^{\pm}}$	197		Ot	m_{LM}
	$m_{ ilde{\chi}_2^\pm}$	140	_		m_{nLM}

		1		
S		Gen. 1,2	Gen. 3	
ON	$m_{ ilde{u}_1}$	921	114	
ept	$m_{ ilde{u}_2}$	914	782	
/Sle	$m_{ ilde{d}_1}$	924	737	
·ks/	$m_{ ilde{d}_2}$	911	1052	
luar	$m_{ ilde{e}_1}$	779	955	
Sq	$m_{ ilde{e}_2}$	766	1037	
	$m_{ ilde{ u}}$	774	1020	
	δho	6.4×10^{-10}	10^{-5}	
bs .	$\delta(g-2)_{\mu}$	-5.5×10^{-10}		
\bigcirc	$b \rightarrow s \gamma$	2.5×10^{-10}	10^{-4}	
her	$B_s \to \mu^+ \mu^-$	3.6×10^{-10}	10^{-9}	
Ot	m_{LMM}	117		
	m_{nLMM}	215'	73	

	Observable				
	$m_{3/2}$	1049	_		
out	aneta	25		SUC	
Inp	$\operatorname{sgn}(\mu)$	_		pto	
	n_1, n_2, n_3	0,0,0		Sle	
	$\mu(M_{ m SUSY})$	-1391		$\frac{S}{2}$	
B	m_{h^0}	112.9		ark	
M	m_{H^0}	1224		du;	
Ē	m_{A^0}	1242		Ň	
	m_{H^+}	1245	_		
÷.	$m_{ ilde{\chi}_1^0}$	101			
Veu	$m_{ ilde{\chi}_2^0}$	197		lbs	δ
	$m_{ ilde{\chi}_3^0}$	1397			
arg	$m_{ ilde{\chi}_4^0}$	-1398		hei	B_s
Ch	$m_{\tilde{\chi}_1^{\pm}}$	197		Öt	
	$m_{ ilde{\chi}_2^{\pm}}$	140	_		

		1		
O		Gen. 1,2	Gen. 3	
epton	$m_{ ilde{u}_1}$	921	114	
	$m_{ ilde{u}_2}$	914	782	
/Sle	$m_{ ilde{d}_1}$	924	737	
'ks/	$m_{ ilde{d}_2}$	911	1052	
uar	$m_{ ilde{e}_1}$	779	955	
Sq_1	$m_{ ilde{e}_2}$	766	1037	
	$m_{ ilde{ u}}$	774	1020	
	δho	6.4×10^{-10}	10^{-5}	
bs .	$\delta(g-2)_{\mu}$	$-5.5 \times$	10^{-10}	
\bigcirc	$b \rightarrow s \gamma$	2.5×10^{-10}	10^{-4}	
Other	$B_s \to \mu^+ \mu^-$	3.6×1	10^{-9}	
	m_{LMM}	117		
	m_{nLMM}	215'	73	

Conclusions

- The major obstacle to realistic heterotic orbifold compactifications is currently the moduli stabilization problem
- We have shown, under very general considerations, how this may be addressed using only a single gauge condensate and the assumption of modular invariance
- Interesting low energy physics!
- Parameter space scans? Cosmology?