The LSP in M-Theory

Eric Kuflik with Bobby Acharya and Gordon Kane

Michigan Center for Theoretical Physics University of Michigan, Ann Arbor

May 5 / SVP

Eric Kuflik The LSP in M-Theory

くロト (過) (目) (日)

ъ

Eric Kuflik The LSP in M-Theory

ヘロト 人間 とくほとくほとう

Moduli Stabilization in the G₂ MSSM

- All Moduli are stabalized in detail.
- *G*₂ moduli *z_j* are stabilized by hidden sector Gaugino Condensation

$$W = A_1 \Phi^{a_1} e^{ib_1 f_1(z)} + A_2 \Phi^{a_2} e^{ib_2 f_2(z)} + \dots$$

- SUSY breaking is dominated by the hidden sector meson fields.
- MSSM scalar masses $\sim m_{3/2} \gtrsim 10$ TeV
- Meson fields (to leading order) do not appear in the gauge kinetic function
- Gaugino Masses are suppressed Wino LSP

・ 同 ト ・ 三 ト ・

Moduli Stabilization in the G₂ MSSM

- All Moduli are stabalized in detail.
- *G*₂ moduli *z_j* are stabilized by hidden sector Gaugino Condensation

$$W = A_1 \Phi^{a_1} e^{ib_1 f_1(z)} + A_2 \Phi^{a_2} e^{ib_2 f_2(z)} + \dots$$

- SUSY breaking is dominated by the hidden sector meson fields.
- MSSM scalar masses $\sim m_{3/2} \gtrsim 10$ TeV
- Meson fields (to leading order) do not appear in the gauge kinetic function
- Gaugino Masses are suppressed Wino LSP

ト 4 回 ト 4 三 ト 4

Moduli Stabilization in the G₂ MSSM

- All Moduli are stabalized in detail.
- *G*₂ moduli *z_j* are stabilized by hidden sector Gaugino Condensation

$$W = A_1 \Phi^{a_1} e^{ib_1 f_1(z)} + A_2 \Phi^{a_2} e^{ib_2 f_2(z)} + \dots$$

- SUSY breaking is dominated by the hidden sector meson fields.
- MSSM scalar masses $\sim m_{3/2} \gtrsim$ 10 TeV
- Meson fields (to leading order) do not appear in the gauge kinetic function
- Gaugino Masses are suppressed Wino LSP

マイロ マイロマイ

Moduli Stabilization in the G₂ MSSM

- All Moduli are stabalized in detail.
- *G*₂ moduli *z_j* are stabilized by hidden sector Gaugino Condensation

$$W = A_1 \Phi^{a_1} e^{ib_1 f_1(z)} + A_2 \Phi^{a_2} e^{ib_2 f_2(z)} + \dots$$

- SUSY breaking is dominated by the hidden sector meson fields.
- MSSM scalar masses $\sim m_{3/2} \gtrsim$ 10 TeV
- Meson fields (to leading order) do not appear in the gauge kinetic function
- Gaugino Masses are suppressed Wino LSP

▶ ★ 圖 ▶ ★ 国 ▶ ★ 国 ▶

Moduli Stabilization in the G₂ MSSM

- All Moduli are stabalized in detail.
- *G*₂ moduli *z_j* are stabilized by hidden sector Gaugino Condensation

$$W = A_1 \Phi^{a_1} e^{ib_1 f_1(z)} + A_2 \Phi^{a_2} e^{ib_2 f_2(z)} + \dots$$

- SUSY breaking is dominated by the hidden sector meson fields.
- MSSM scalar masses $\sim m_{3/2} \gtrsim$ 10 TeV
- Meson fields (to leading order) do not appear in the gauge kinetic function
- Gaugino Masses are suppressed Wino LSP

Moduli Stabilization in the G₂ MSSM

- All Moduli are stabalized in detail.
- *G*₂ moduli *z_j* are stabilized by hidden sector Gaugino Condensation

$$W = A_1 \Phi^{a_1} e^{ib_1 f_1(z)} + A_2 \Phi^{a_2} e^{ib_2 f_2(z)} + \dots$$

- SUSY breaking is dominated by the hidden sector meson fields.
- MSSM scalar masses $\sim m_{3/2} \gtrsim$ 10 TeV
- Meson fields (to leading order) do not appear in the gauge kinetic function
- Gaugino Masses are suppressed Wino LSP

Non-Thermal LSP Acharya, Kumar, Bobkov, Kane, Shao, Watson arXiv:0804.0863

Moduli dominate the early universe and Decay to LPSs

- $\bullet\,$ The gravitino mass and Moduli masses need to be $\gtrsim 10$ TeV for succesful BBN
- Gives the correct relic abundance !

Note: Probably generic in String Theory - SUGRA Lagrangian suggests at least one Moduli Mass \sim Gravitino Mass

くロト (過) (目) (日)

Non-Thermal LSP Acharya, Kumar, Bobkov, Kane, Shao, Watson arXiv:0804.0863

- Moduli dominate the early universe and Decay to LPSs
- The gravitino mass and Moduli masses need to be $\gtrsim 10$ TeV for succesful BBN
- Gives the correct relic abundance !

Note: Probably generic in String Theory - SUGRA Lagrangian suggests at least one Moduli Mass \sim Gravitino Mass

ヘロト 人間 ト ヘヨト ヘヨト

Non-Thermal LSP Acharya, Kumar, Bobkov, Kane, Shao, Watson arXiv:0804.0863

- Moduli dominate the early universe and Decay to LPSs
- The gravitino mass and Moduli masses need to be $\gtrsim 10$ TeV for succesful BBN
- Gives the correct relic abundance !

Note: Probably generic in String Theory - SUGRA Lagrangian suggests at least one Moduli Mass \sim Gravitino Mass

くロト (過) (目) (日)

Non-Thermal LSP Acharya, Kumar, Bobkov, Kane, Shao, Watson arXiv:0804.0863

- Moduli dominate the early universe and Decay to LPSs
- The gravitino mass and Moduli masses need to be $\gtrsim 10$ TeV for succesful BBN
- Gives the correct relic abundance !

Note: Probably generic in String Theory - SUGRA Lagrangian suggests at least one Moduli Mass \sim Gravitino Mass

くロト (過) (目) (日)

Non-Thermal LSP Acharya, Kumar, Bobkov, Kane, Shao, Watson arXiv:0804.0863

- Moduli dominate the early universe and Decay to LPSs
- The gravitino mass and Moduli masses need to be $\gtrsim 10$ TeV for succesful BBN
- Gives the correct relic abundance !

Note: Probably generic in String Theory - SUGRA Lagrangian suggests at least one Moduli Mass \sim Gravitino Mass

ヘロト ヘアト ヘビト ヘビト

LHC Phenomonology Acharya, Grajek, Kane, Kuflik, Suruliz, Wang arXiv:0901.3367

- Rich LHC Phenomonology
- Gluinos are produced in pairs
- $\sigma \approx {\rm pb}$
- Gluinos decay to 4 tops and Missing Energy
- Can be discovered early and easily at the LHC

イロト イヨト イヨト イ

LHC Phenomonology Acharya, Grajek, Kane, Kuflik, Suruliz, Wang arXiv:0901.3367

- Rich LHC Phenomonology
- Gluinos are produced in pairs
- $\sigma \approx {\rm pb}$
- Gluinos decay to 4 tops and Missing Energy
- Can be discovered early and easily at the LHC

ヘロト ヘアト ヘヨト ヘ

Question: How robust is the prediction that the LSP is Wino?

ヘロト 人間 とくほとくほとう

Wino LSP

 The LSP is a combination of Bino, Wino and Higgsino Components

$$\chi = \epsilon_{\tilde{B}}\tilde{B} + \epsilon_{\tilde{W}}\tilde{W} + \epsilon_{\tilde{h}_{u}}\tilde{h}_{u} + \epsilon_{\tilde{h}_{d}}\tilde{h}_{d}$$

- Even small Higgsino components can have large effects on direct detection of dark matter.
- We need a theory of the μ term
- Why is the LSP stable?

ヘロン 人間 とくほ とくほ とう

Wino LSP

 The LSP is a combination of Bino, Wino and Higgsino Components

$$\chi = \epsilon_{\tilde{B}}\tilde{B} + \epsilon_{\tilde{W}}\tilde{W} + \epsilon_{\tilde{h}_u}\tilde{h}_u + \epsilon_{\tilde{h}_d}\tilde{h}_d$$

- Even small Higgsino components can have large effects on direct detection of dark matter.
- We need a theory of the μ term
- Why is the LSP stable?

ヘロン 人間 とくほ とくほ とう

Discrete Symmetries in M-Theory

- Witten (hep-ph/0201018) constructed a geometric discrete symmetry that can
 - forbid μ term H_uH_d while allowing the Higgs triplet mass DD^c Solved D T splitting.
 - forbid Dimension 4 and 5 proton decay
 - forbids R-parity violating operators
- This symmetry must be broken since μ cannot be zero
 - Moduli may be charged under this symmetry, but get vevs

$$\langle z
angle pprox m_p + heta^2 m_{1/2} m_p$$

イロト イポト イヨト イヨト

Discrete Symmetries in M-Theory

- Witten (hep-ph/0201018) constructed a geometric discrete symmetry that can
 - forbid μ term H_uH_d while allowing the Higgs triplet mass DD^c Solved D T splitting.
 - forbid Dimension 4 and 5 proton decay
 - forbids R-parity violating operators
- This symmetry must be broken since μ cannot be zero
 - Moduli may be charged under this symmetry, but get vevs

$$\langle z
angle pprox m_p + heta^2 m_{1/2} m_p$$

イロン イロン イヨン イヨン

Discrete Symmetries in M-Theory

- Witten (hep-ph/0201018) constructed a geometric discrete symmetry that can
 - forbid μ term H_uH_d while allowing the Higgs triplet mass DD^c Solved D T splitting.
 - forbid Dimension 4 and 5 proton decay
 - forbids R-parity violating operators
- This symmetry must be broken since μ cannot be zero
 - Moduli may be charged under this symmetry, but get vevs

$$\langle z
angle pprox m_p + heta^2 m_{1/2} m_p$$

イロン イロン イヨン イヨン

Discrete Symmetries in M-Theory

- Witten (hep-ph/0201018) constructed a geometric discrete symmetry that can
 - forbid μ term H_uH_d while allowing the Higgs triplet mass DD^c Solved D T splitting.
 - forbid Dimension 4 and 5 proton decay
 - forbids R-parity violating operators
- This symmetry must be broken since μ cannot be zero
 - Moduli may be charged under this symmetry, but get vevs

$$\langle z
angle pprox m_{
m p} + heta^2 m_{
m 1/2} m_{
m p}$$

・ロト ・ 一下・ ・ ヨト・

Discrete Symmetries in M-Theory

- Witten (hep-ph/0201018) constructed a geometric discrete symmetry that can
 - forbid μ term H_uH_d while allowing the Higgs triplet mass DD^c Solved D T splitting.
 - forbid Dimension 4 and 5 proton decay
 - forbids R-parity violating operators
- This symmetry must be broken since μ cannot be zero
 - Moduli may be charged under this symmetry, but get vevs

$$\langle z
angle pprox m_{
m p} + heta^2 m_{
m 1/2} m_{
m p}$$

ヘロト ヘアト ヘヨト ヘ

Moduli Induced R-Parity Problem

Axionic shift symmetries

$$z_i \rightarrow z_i + a_i$$

will forbid superpotential couplings.

- But the μ term and R-parity violating couplings are allowed in the Kahler potential
 - $K \supset (Im z_j + i Im z_k)H_uH_d \rightarrow W \supset m_{1/2}H_uH_d$
 - $K \supset (Im z_j + i Im z_k)(M_{\bar{5}}h_5 + M_{10}M_{\bar{5}}M_{\bar{5}}) \rightarrow m_{1/2}M_{\bar{5}}h_5 + \frac{m_{1/2}}{m_p}M_{10}M_{\bar{5}}M_{\bar{5}}$

・ロン・西方・ ・ ヨン・

Moduli Induced R-Parity Problem

Axionic shift symmetries

$$z_i \rightarrow z_i + a_i$$

will forbid superpotential couplings.

 But the µ term and R-parity violating couplings are allowed in the Kahler potential

•
$$K \supset (Im z_j + i Im z_k)H_uH_d \rightarrow W \supset m_{1/2}H_uH_d$$

•
$$K \supset (Im z_j + i Im z_k)(M_{\bar{5}}h_5 + M_{10}M_{\bar{5}}M_{\bar{5}}) \rightarrow m_{1/2}M_{\bar{5}}h_5 + \frac{m_{1/2}}{m_p}M_{10}M_{\bar{5}}M_{\bar{5}}$$

< □ > < 同 > < 三 > <

Proton Decay

Baryon and lepton number are violated

$$egin{aligned} \mathcal{W}_{p_{1}} &= \lambda' L Q d^{c} + \lambda'' u^{c} d^{c} d^{c} + \lambda''' L L e^{c} \ \lambda' &\sim \lambda'' \sim \lambda''' \sim rac{m_{1/2}}{m_{p}} \end{aligned}$$

Dimension-4 proton decay is really Dimension-6

LSP Lifetime

• The LSP will decay

 $\begin{array}{c} \underbrace{\frac{N_1}{2}}{\frac{10^{-17} \sec}{\lambda^2} \left(\frac{m_{\tilde{q},\tilde{l}}}{1 \mathrm{eV}}\right)^4 \left(\frac{100 \ \mathrm{GeV}}{m_{\tilde{N}_1}}\right)^5 } \\ \tau \approx \frac{10^{-17} \sec}{\lambda^2} \left(\frac{m_{\tilde{q},\tilde{l}}}{1 \mathrm{eV}}\right)^4 \left(\frac{100 \ \mathrm{GeV}}{m_{\tilde{N}_1}}\right)^5 \end{array} \\ \bullet \ \mathrm{For} \ m_{\tilde{q},\tilde{l}} \sim 10 \ \mathrm{TeV}, \ m_{\tilde{N}_1} \sim 100 \ \mathrm{GeV}, \ \lambda \sim 10^{-15} \\ \tau \sim 10^{17} \sec \sim t_0 \qquad \mathrm{Age \ of \ the \ Universe} \end{array}$

Indirect detection requires

LSP Lifetime

• The LSP will decay

 $\begin{array}{c} \underbrace{\frac{N_1}{2}}{\frac{10^{-17} \sec}{\lambda^2} \left(\frac{m_{\tilde{q},\tilde{l}}}{\nabla \lambda^{\prime\prime}}\right)^4} \begin{pmatrix} \frac{100 \text{ GeV}}{m_{\tilde{N}_1}} \end{pmatrix}^5 \\ \tau \approx \frac{10^{-17} \sec}{\lambda^2} \left(\frac{m_{\tilde{q},\tilde{l}}}{\text{TeV}}\right)^4 \left(\frac{100 \text{ GeV}}{m_{\tilde{N}_1}}\right)^5 \\ \end{array}$ • For $m_{\tilde{q},\tilde{l}} \sim 10 \text{ TeV}, \ m_{\tilde{N}_1} \sim 100 \text{ GeV}, \ \lambda \sim 10^{-15} \\ \tau \sim 10^{17} \sec \sim t_0$ Age of the Universe

Indirect detection requires

$$au\gtrsim$$
 10²⁶ sec

イロト イポト イヨト イヨト 三日

R-Parity from GUTs

• Where is *R*-Parity?

• Try a local continous U(1) – Moduli are uncharged.

• Which U(1)s?

- Simple GUT Groups Additional *U*(1)s are difficult to understand in global embeddings
- Chiral Theory
- Anomaly free theory
- *E*₆, *SO*(10) and *SU*(5)
- It is well known that these contain *R*-Parity

(日) (四) (日) (日) (日)

R-Parity from GUTs

- Where is *R*-Parity?
- Try a local continous U(1) Moduli are uncharged.
- Which U(1)s?
 - Simple GUT Groups Additional *U*(1)s are difficult to understand in global embeddings
 - Chiral Theory
 - Anomaly free theory
 - *E*₆, *SO*(10) and *SU*(5)
- It is well known that these contain *R*-Parity

くロト (過) (目) (日)

R-Parity from GUTs

- Where is *R*-Parity?
- Try a local continous U(1) Moduli are uncharged.
- Which U(1)s?
 - Simple GUT Groups Additional *U*(1)s are difficult to understand in global embeddings
 - Chiral Theory
 - Anomaly free theory
 - *E*₆, *SO*(10) and *SU*(5)
- It is well known that these contain R-Parity

くロト (過) (目) (日)

æ

GUT Review Slansky

$$\frac{E_{6} \rightarrow SO(10)_{\eta} \rightarrow SU(5)_{\chi} \quad SM \times U(1)_{\chi} \times U(1)_{\eta}}{\left\{ \begin{array}{cccc} \mathbf{I0}_{-1} \left\{ \begin{array}{cccc} Q & (\mathbf{3}, \mathbf{2})_{1} & -1 & 1 \\ u^{c} & (\mathbf{\overline{3}}, \mathbf{1})_{-4} & -1 & 1 \\ e^{c} & (\mathbf{1}, \mathbf{1})_{6} & -1 & 1 \\ \mathbf{\overline{5}}_{3} & \left\{ \begin{array}{cccc} d^{c} & (\mathbf{\overline{3}}, \mathbf{1})_{2} & 3 & 1 \\ \mathbf{1}_{-5} & \nu^{c} & (\mathbf{1}, \mathbf{1})_{0} & -5 & 1 \\ \mathbf{10}_{-2} \left\{ \begin{array}{cccc} \mathbf{5}_{2} & \left\{ \begin{array}{cccc} D & (\mathbf{3}, \mathbf{1})_{-2} & 2 & -2 \\ H_{u} & (\mathbf{1}, \mathbf{2})_{-3} & 3 & 1 \\ \mathbf{1}_{-5} & \nu^{c} & (\mathbf{1}, \mathbf{1})_{0} & -5 & 1 \\ \mathbf{10}_{-2} \left\{ \begin{array}{cccc} \mathbf{5}_{2} & \left\{ \begin{array}{cccc} D & (\mathbf{3}, \mathbf{1})_{-2} & 2 & -2 \\ H_{u} & (\mathbf{1}, \mathbf{2})_{3} & 2 & -2 \\ \mathbf{5}_{-2} & \left\{ \begin{array}{cccc} D^{c} & (\mathbf{\overline{3}}, \mathbf{1})_{2} & -2 & -2 \\ H_{d} & (\mathbf{1}, \mathbf{2})_{-3} & -2 & -2 \\ H_{d} & (\mathbf{1}, \mathbf{2})_{-3} & -2 & -2 \\ \mathbf{1}_{4} & \mathbf{1}_{0} & S & (\mathbf{1}, \mathbf{1})_{0} & 0 & 4 \end{array} \right\} \right\}$$

Eric Kuflik

The LSP in M-Theory

イロン イロン イヨン イモン

Wilson Line Breaking

• How will the symmetries be broken?

- By Wilson Lines
- E_6 , $SO(10) \rightarrow SM \times U(1)_{\chi} (\times U(1)_{\eta})$ $U(1)_{\chi}$ cannot be broken by Wilson lines – Witten 8
- $E_6 \rightarrow SU(10) \times U(1)_{\eta}$ S0(10) broken by 16, 16
- E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}(\times U(1)_{\eta})$ SU(5) broken by 10, $\overline{10}$
- SU(6), Pati-Salam

ヘロト ヘアト ヘビト ヘビト

ъ

Wilson Line Breaking

• How will the symmetries be broken?

- By Wilson Lines
- E_6 , $SO(10) \rightarrow SM \times U(1)_{\chi}(\times U(1)_{\eta})$ $U(1)_{\chi}$ cannot be broken by Wilson lines – Witten 85
- $E_6 \rightarrow SU(10) \times U(1)_{\eta}$ S0(10) broken by 16,16
- E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}(\times U(1)_{\eta})$ SU(5) broken by 10, 10
- SU(6), Pati-Salam

ヘロト ヘアト ヘビト ヘビト

Wilson Line Breaking

- How will the symmetries be broken?
 - By Wilson Lines
 - E_6 , $SO(10) \rightarrow SM \times U(1)_{\chi} (\times U(1)_{\eta})$ $U(1)_{\chi}$ cannot be broken by Wilson lines – Witten 85
 - $E_6 \rightarrow SU(10) \times U(1)_{\eta}$ S0(10) broken by 16,16
 - E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}(\times U(1)_{\eta})$ SU(5) broken by 10, $\overline{10}$
 - SU(6), Pati-Salam

・ロン・西方・ ・ ヨン・

æ

Wilson Line Breaking

- How will the symmetries be broken?
 - By Wilson Lines
 - E_6 , $SO(10) \rightarrow SM \times U(1)_{\chi} (\times U(1)_{\eta})$ $U(1)_{\chi}$ cannot be broken by Wilson lines – Witten 85
 - $E_6 \to SU(10) \times U(1)_{\eta}$ S0(10) broken by 16, 16
 - E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}(\times U(1)_{\eta})$ SU(5) broken by 10, $\overline{10}$
 - SU(6), Pati-Salam

・ロン・西方・ ・ ヨン・ ヨン・

ъ

Wilson Line Breaking

- How will the symmetries be broken?
 - By Wilson Lines
 - E_6 , $SO(10) \rightarrow SM \times U(1)_{\chi} (\times U(1)_{\eta})$ $U(1)_{\chi}$ cannot be broken by Wilson lines – Witten 85
 - $E_6 \to SU(10) \times U(1)_{\eta}$ S0(10) broken by 16, 16
 - E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}(\times U(1)_{\eta})$ SU(5) broken by 10, 10
 - SU(6), Pati-Salam

ヘロト ヘアト ヘビト ヘビト

æ

Wilson Line Breaking

- How will the symmetries be broken?
 - By Wilson Lines
 - E_6 , $SO(10) \rightarrow SM \times U(1)_{\chi}(\times U(1)_{\eta})$ $U(1)_{\chi}$ cannot be broken by Wilson lines – Witten 85
 - $E_6 \to SU(10) \times U(1)_{\eta}$ S0(10) broken by 16, 16
 - E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}(\times U(1)_{\eta})$ SU(5) broken by 10, $\overline{10}$
 - SU(6), Pati-Salam

ヘロト 人間 ト ヘヨト ヘヨト

æ

$E_6, SO(10) ightarrow SM imes U(1)_{\chi}^{-1}$

• E_6 , $SO(10) \rightarrow SM \times U(1)_{\chi}$

- $U(1)_{\chi}$ Can be broken by $\langle \bar{\nu}^c \rangle$
- Will break R-Parity
- How will a small vev be generated?
- Even if we could

$$K \supset (Im z_j + i Im z_k) \nu^c LH_u$$

$$ightarrow W \supset m_{1/2} rac{m_{3/2}}{m_p} LH_u
ightarrow W \supset rac{m_{3/2}}{m_p} LLe^{c}$$

LSP decays as before

$E_6 \rightarrow S$	$SO(10)_{\eta}$	$\rightarrow SU(s)$	$(5)_{\chi}$	$SM\times U$	$(1)_{\chi}$	$\times U(1)_{\eta}$
		. (Q	$\left(3,2\right) _{1}$	-1	1
	ſ	10_{-1}	u^c	$({\bf \overline{3}},{\bf 1})_{-4}$	-1	1
		l	e^{c}	$(1, 1)_{6}$	-1	1
	$\begin{bmatrix} 16_1 \\ \end{bmatrix}$	<u>₹</u> .∫	d^c	$(\overline{3},1)_2$	3	1
	\mathbf{J}_3	L	$(1, 2)_{3}$	3	1	
	l	1_{-5}	ν^c	$(1,1)_0$	-5	1
27 { 10.2	(5 ₂ ∫	D	$({\bf 3},{\bf 1})_{-2}$	2	-2
	10 .)	ົ ໂ	H_u	$(1, 2)_3$	2	-2
	$\overline{5}_{2} \int D^{c}$	$(\overline{3},1)_2$	-2	-2		
	$\int \int H_d$		H_d	$(1, 2)_{-3}$	-2	-2
	1_4	1_0	S	$(1, 1)_0$	0	4

ヘロン 人間 とくほ とくほ とう

$E_6, SO(10) ightarrow SM imes U(1)_{\chi}$

- E_6 , $SO(10) \rightarrow SM \times U(1)_{\chi}$
- $U(1)_{\chi}$ Can be broken by $\langle \bar{\nu}^c \rangle$
- Will break R-Parity
- How will a small vev be generated?Even if we could

$$K \supset (Im z_j + i Im z_k) \nu^c LH_u$$

$$ightarrow W \supset m_{1/2} rac{m_{3/2}}{m_p} LH_u
ightarrow W \supset rac{m_{3/2}}{m_p} LLe^{c}$$

LSP decays as before

$E_6 \rightarrow S$	$SO(10)_{\eta}$	$\rightarrow SU$	$V(5)_{\chi}$	$SM\times U$	$(1)_{\chi}$	$\times U(1)_{\eta}$
			$\left(Q \right)$	$(3,2)_1$	-1	1
	ſ	10 ₋₁	$\left\{ u^{c} \right\}$	$(\overline{3}, 1)_{\mathcal{A}}$	-1	1
			$\left e^{c} \right $	$(1,1)_{6}$	-1	1
	$\begin{bmatrix} 16_1 \\ \end{bmatrix}$	F.	$\int d^c$	$(\overline{3},1)_{2}^{\circ}$	3	1
	03	L	$(1, 2)_{3}$	3	1	
	l	1_{-5}	ν^{c}	$(1,1)_0$	-5	1
27	6	5.	∫ D	$({\bf 3},{\bf 1})_{-2}$	2	-2
	10.	02	$\left H_u \right $	$(1, 2)_3$	2	-2
	10-2	5 .	$\int D^c$	$(\overline{3},1)_2$	-2	-2
	L L		$\left H_d \right $	$(1, 2)_{-3}$	-2	-2
	$\begin{bmatrix} 1_4 \end{bmatrix}$	1_0	S	$(1, 1)_0$	0	4

イロト イポト イヨト イヨト 三日

$E_6, SO(10) ightarrow SM imes U(1)_{\chi}$

- E_6 , $SO(10) \rightarrow SM \times U(1)_{\chi}$
- $U(1)_{\chi}$ Can be broken by $\langle \bar{\nu}^c \rangle$
- Will break R-Parity
- How will a small vev be generated?

Even if we could

$$K \supset (Im z_j + i Im z_k) \nu^c LH_u$$

$$ightarrow W \supset m_{1/2} rac{m_{3/2}}{m_p} LH_u
ightarrow W \supset rac{m_{3/2}}{m_p} LLe^c$$

LSP decays as before

$E_6 \rightarrow S$	$SO(10)_{\eta}$	$\rightarrow SU$	$V(5)_{\chi}$	$SM \times U$	$(1)_{\chi}$	$\times U(1)_{\eta}$
			Q	$(3,2)_1$	-1	1
	ſ	10 ₋₁	$\left u^{c} \right $	$(\overline{3}, 1)_{\mathcal{A}}$	-1	1
			e^{c}	$(1,1)_{6}$	-1	1
1	$\begin{bmatrix} 16_1 \\ \end{bmatrix}$	F	$\int d^c$	$(\overline{3},1)_{2}^{\circ}$	3	1
	\mathbf{D}_3	L	$(1, 2)_{-3}$	3	1	
	l	1_{-5}	ν^{c}	$(1,1)_0$	-5	1
27	6	5.	f D	$({\bf 3},{\bf 1})_{-2}$	2	-2
10-2	10.	02	H_u	$(1, 2)_3$	2	-2
	10-2	<u>5</u> .	$\int D^c$	$(\overline{3},1)_2$	-2	-2
	l	0-2	$\left H_d \right $	$(1, 2)_{-3}$	-2	-2
	1_4	1_{0}	S	$(1, 1)_0$	0	4

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

$E_6, SO(10) ightarrow SM imes U(1)_{\chi}$

- E_6 , $SO(10) \rightarrow SM \times U(1)_{\chi}$
- $U(1)_{\chi}$ Can be broken by $\langle \bar{\nu}^c \rangle$
- Will break R-Parity
- How will a small vev be generated?
- Even if we could

$$K \supset (\operatorname{Im} z_j + i \operatorname{Im} z_k) \nu^{c} L H_u$$

$$ightarrow W \supset m_{1/2} rac{m_{3/2}}{m_p} L H_u
ightarrow W \supset rac{m_{3/2}}{m_p} L L e^c$$

LSP decays as before

$E_6 \rightarrow SO(10)_\eta \rightarrow SU(5)_\chi$	$SM \times U$	$(1)_{\chi}$	$\times U(1)_{\eta}$
(Q	$({\bf 3},{\bf 2})_1$	-1	1
$\begin{bmatrix} 10_{-1} \\ u^c \end{bmatrix}$	$(\overline{3}, 1)_{\mathcal{A}}$	-1	1
e^{c}	$(1,1)_{6}^{-1}$	-1	1
$\left(\begin{array}{c} 16_1 \\ \mathbf{\overline{F}} \end{array} \right) \left(\begin{array}{c} \mathbf{d}^c \end{array} \right)$	$({\bf \bar{3}},{\bf 1})_{2}^{\circ}$	3	1
$\mathbf{a}_3 \in L$	$(1,2)_{-3}$	3	1
1_{-5} ν^{c}	$(1,1)_0$	-5	1
27 (5) $\int D$	$({\bf 3},{\bf 1})_{-2}$	2	-2
10_{2}	$(1, 2)_3$	2	-2
$\overline{5}_{2} \int \overline{5}_{2} \int D^{c}$	$(\overline{3},1)_2$	-2	-2
	$(1, 2)_{-3}$	-2	-2
$\begin{bmatrix} 1_4 & 1_0 & S \end{bmatrix}$	$(1, 1)_0$	0	4

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}$ - Flipped SU(5)

• $E_6, SO(10) \rightarrow SU(5) \times U(1)_{\chi}$

- Can be broken by $H = \langle 10_{-1} \rangle, \overline{H} = \langle \overline{10}_1 \rangle$
- $W \supset H_{10}H_{10}h_5 + \overline{H}_{\overline{10}}\overline{H}_{\overline{10}}\overline{h}_{\overline{5}}$ Solves D-T Splitting
- Will break R-Parity
- Will need GUT scale vev
- Even if we could

 $K \supset (\operatorname{Im} z_j + i \operatorname{Im} z_k)(H_{10}\overline{H}_{\overline{5}}M_{\overline{5}}) \rightarrow W \supset \frac{m_{1/2}m_{GUT}}{m_p} \frac{m_{3/2}}{m_p} LH_u$

Eric Kuflik

• LSP decays faster than before

$E_6 \rightarrow S$	$SO(10)_{\eta}$ -	$\rightarrow SU$	$(5)_{\chi}$	$SM \times U$	$(1)_{\chi}$:	$\times U(1)_{\eta}$
			$\left[\begin{array}{c} Q \end{array} \right]$	$({\bf 3},{\bf 2})_1$	-1	1
	ſ	10-1	u^c	$(\bar{\bf 3}, {\bf 1})_{4}$	-1	1
	. 10			$(1, 1)_6$	-1	1
	$\begin{bmatrix} 10_1 \\ 10_1 \end{bmatrix}$	<u>F</u> .	$\int d^c$	$(\overline{3},1)_2$	3	1
	J 3 ($\lfloor L \rfloor$	$(1, 2)_{3}$	3	1 /	
	l	1_{-5}	ν^{c}	$(1,1)_{0}$	-5	$_{1}/$
$\left \begin{array}{c} 27 \\ 10_{-2} \end{array} \right \\ \left \begin{array}{c} 10_{-2} \end{array} \right \\ \left \left \left \begin{array}{c} 10_{-2} \end{array} \right \\ \left $	6	5.	$\int D$	$({\bf 3},{\bf 1})_{-2}$	2	-2
	92 (H_u	$(1, 2)_3$	2	-2	
	10-2	$\overline{5}$.	$\int D^c$	$(\overline{3},1)_2$	-2	-2
		0-2 .	H_d	$(1, 2)_{-3}$	-2	-2
	1_4	1_0	S	$(1, 1)_0$	0	4

ヘロト 人間 ト ヘヨト ヘヨト

E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}$ - Flipped SU(5)

- $E_6, SO(10) \rightarrow SU(5) \times U(1)_{\chi}$
- Can be broken by $H = \langle 10_{-1} \rangle, \overline{H} = \langle \overline{10}_1 \rangle$
- $W \supset H_{10}H_{10}h_5 + \bar{H}_{1\bar{1}0}\bar{H}_{1\bar{1}0}\bar{h}_{\bar{5}}$ Solves D-T Splitting
- Will break R-Parity
- Will need GUT scale vev
- Even if we could

 $K \supset (\operatorname{Im} z_j + i \operatorname{Im} z_k)(H_{10}\overline{H}_{\overline{5}}M_{\overline{5}}) \rightarrow W \supset \frac{m_{1/2}m_{GUT}}{m_p} \frac{m_{3/2}}{m_p} LH_u$

Eric Kuflik

• LSP decays faster than before

$E_6 \rightarrow S$	$SO(10)_{\eta}$	$\rightarrow SU(5)_{\chi}$	$SM \times U$	$(1)_{\chi}$	$\times U(1)_{\eta}$
		(Q	$({\bf 3},{\bf 2})_1$	-1	1
	ſ	10_{-1} u^{c}	$(\bar{\bf 3}, {\bf 1})_{4}$	-1	1
		(e ^c	$(1,1)_{6}$	-1	1
	$\begin{bmatrix} 16_1 \\ \end{bmatrix}$	$\overline{\mathbf{E}}$, $\int d^c$	$(\overline{3},1)_2$	3	1
		$\mathbf{J}_{3} \left\{ L \right\}$	$(1,2)_{-3}$	3	1 /
	ι	1.5 ν^{c}	$(1,1)_0$	-5	1 /
27	6	$5_2 \int D$	$({\bf 3},{\bf 1})_{-2}$	2	-2
- 1	10	$\int H_u$	$(1, 2)_3$	2	-2
	$\overline{5} \circ \int D^c$	$(\overline{3},1)_2$	-2	-2	
	$\int H_d$	$(1,2)^{-3}$	-2	-2	
	14	10 S	(1 1)	0	1

ヘロト ヘアト ヘビト ヘビト

E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}$ - Flipped SU(5)

- E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}$
- Can be broken by $H = \langle 10_{-1} \rangle, \overline{H} = \langle \overline{10}_1 \rangle$
- $W \supset H_{10}H_{10}h_5 + \bar{H}_{1\bar{1}0}\bar{H}_{1\bar{1}0}\bar{h}_{\bar{5}}$ Solves D-T Splitting
- Will break R-Parity
- Will need GUT scale vev
- Even if we could

 $K \supset (\operatorname{Im} z_j + i \operatorname{Im} z_k)(H_{10}\overline{H}_{\overline{5}}M_{\overline{5}}) \rightarrow W \supset \frac{m_{1/2}m_{GUT}}{m_p} \frac{m_{3/2}}{m_p} LH_u$

Eric Kuflik

• LSP decays faster than before

$E_6 \rightarrow S$	$SO(10)_{\eta}$	$\rightarrow SU$	$V(5)_{\chi}$	$SM \times U$	$(1)_{\chi}$	$\times U(1)_{\eta}$
			Q	$({\bf 3},{\bf 2})_1$	-1	1
	ſ	10 ₋₁	$\left\{ u^{c} \right\}$	$(\bar{\bf 3}, {\bf 1})_{4}$	-1	1
			e^{c}	$(1,1)_{6}$	-1	1
1	$\begin{bmatrix} 16_1 \\ \end{bmatrix}$	Ē.	$\int d^{c}$	$(\overline{3},1)_2$	3	1
	03	L	$(1, 2)_{3}$	3	1 /	
	L L	1_{-5}	ν^{c}	$(1, 1)_0$	-5	1 /
27	(5.	$\int D$	$({\bf 3},{\bf 1})_{-2}$	2	-2
10.2	02	H_u	$(1, 2)_3$	2	-2	
	10-2	$\overline{5}$.	$\int D^c$	$(\overline{3},1)_2$	-2	-2
	l (0-2	$\left H_d \right $	$(1, 2)_{-3}$	-2	-2
	1_4	1_0	S	$(1, 1)_0$	0	4

ヘロト 人間 ト ヘヨト ヘヨト

E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}$ - Flipped SU(5)

- E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}$
- Can be broken by $H = \langle 10_{-1} \rangle, \overline{H} = \langle \overline{10}_1 \rangle$
- $W \supset H_{10}H_{10}h_5 + \bar{H}_{1\bar{1}0}\bar{H}_{1\bar{1}0}\bar{h}_{\bar{5}}$ Solves D-T Splitting
- Will break R-Parity
- Will need GUT scale vev
- Even if we could

$$K \supset (\operatorname{Im} z_j + i \operatorname{Im} z_k)(H_{10}\overline{H}_{\overline{5}}M_{\overline{5}}) \rightarrow W \supset \frac{m_{1/2}m_{GUT}}{m_p} \frac{m_{3/2}}{m_p} LH_u$$

• LSP decays faster than before

$E_6 \rightarrow S_6$	$SO(10)_{\eta}$ -	$\rightarrow SU($	$(5)_{\chi}$	$SM \times U$	$(1)_{\chi}$:	$\times U(1)_{\eta}$
			Q	$({\bf 3},{\bf 2})_1$	-1	1
	ſ	10_{-1}	u^c	$(\bar{\bf 3}, {\bf 1})_{4}$	-1	1
	. 10	l	e^{c}	$(1,1)_{6}$	-1	1
	$\begin{bmatrix} 16_1 \\ 1 \end{bmatrix}$	= J	d^{c}	$(\overline{3},1)_2$	3	1
0	J 3 1	$\lfloor L \rfloor$	$(1, 2)_{3}$	3	1 /	
	l	1_{-5}	ν^{c}	$(1,1)_0$	-5	$_{1}/$
27	6	5. J	$\int D$	$({\bf 3},{\bf 1})_{-2}$	2	-2
10.2 (10	້ ໂ	H_u	$(1, 2)_3$	2	-2
	10-2	5.1	$\int D^c$	$(\overline{3},1)_2$	-2	-2
	ן ני	5-2 }	H_d	$(1, 2)_{-3}$	-2	-2
	1_4	1_0	S	$(1, 1)_0$	0	4

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

$$\begin{split} E_8 \to E_6 \times SU(3) \\ \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_8 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} 2^{27} \begin{cases} 16_1 \begin{cases} U(1)_3 & U(1)_3 \\ U(1)_3 & U(1)_8 \\ 10_2 \end{cases} \begin{array}{c} \frac{E_6 \to SO(10)_\eta \to SU(5)_X & SM \times U(1)_X \times U(1)_\eta}{\left(3,2\right)_4 & -1 & 1\right)} \\ 10_1 \begin{cases} Q & (3,2)_1 & -1 & 1 \\ Q & (3,1)_2 & 3 & 1 \\ 1 & 5 & \frac{V^2}{C^2} \\ (1,1)_0 & -5 & -1 \\ 10_2 \begin{cases} 5_2 \begin{cases} D & (3,1)_2 & 2 & -2 \\ H_u & (1,2)_3 & 2 & -2 \\ 10_2 \begin{cases} 5_2 \begin{cases} D & (3,1)_2 & 2 & -2 \\ H_u & (1,2)_3 & 2 & -2 \\ 5_2 \begin{cases} D^2 & (3,1)_2 & -2 & -2 \\ H_u & (1,2)_3 & 2 & -2 \\ 14 & 1_0 & S \\ (1,1)_0 & 0 & 4 \\ 14 & 1_0 & S \\ (1,1)_0 & 0 & 4 \\ 14 & 1_0 & S \\ 16 & 1 & 1_0 \\ 16 & 1 & 1_0 \\ 16 & 1 & 1_0 \\ 16 & 1 & 1_0 \\ 16 & 1 & 1_0 \\ 16 & 1 & 1_0 \\ 16 & 1 & 1_0 \\ 16 & 1 & 1_0 \\ 16 & 1 & 1_0 \\ 16 & 1 & 1_0 \\ 16 & 1 & 1_0 \\ 16 & 1 & 1_0 \\ 16 & 16 & 1_0 \\ 16 & 1_0 \\ 16 & 1_0 \\ 16 & 1_0 \\ 16 & 1_0 \\ 16 & 1_0 \\ 16 & 1_0 \\ 16 & 1_0 \\ 16 & 1_0 \\ 16 & 1_0 \\ 16 & 1_0 \\ 16 & 1_0 \\ 16 & 1_0 \\$$

Eric Kuflik The LSP in M-Theory

Discrete symmetry revisited

 Can a discrete symmetry be broken to allow the μ-term while preserving *R*-parity.

Witten's construction

$$\begin{array}{c|c} \mbox{Field} & \mathcal{Z}_n \\ \hline M_{10} & e^{i\sigma} \\ M_{\overline{5}} & e^{i\tau} \\ H_{\overline{5}} & D & e^{i\alpha} \\ H_{\overline{5}} & H_u & e^{i\alpha} \\ H_{\overline{5}} & H_d & e^{i\delta} \end{array}$$

Eric Kuflik The LSP in M-Theory

イロト イポト イヨト イヨト

Discrete symmetry revisited

- Can a discrete symmetry be broken to allow the μ-term while preserving *R*-parity.
- Witten's construction

$$\begin{array}{c|c} \mbox{Field} & \mathcal{Z}_n \\ \hline M_{10} & e^{i\sigma} \\ M_{\bar{5}} & e^{i\tau} \\ H_5 & D & e^{i\alpha} \\ H_5 & H_u & e^{i\alpha} \\ H_{\bar{5}} & D^c & e^{i\gamma} \\ H_{\bar{5}} & H_d & e^{i\delta} \end{array}$$

ヘロン 人間 とくほ とくほ とう

E DQC

Discrete symmetry revisited

 Allow Yukawa couplings, Majorana neutrino masses, and the Higgs triplet masses

	Coupling	Constraint
Up Yukawa Coupling	$M_{10}M_{10}H_u$	$2\sigma + \alpha = 2\pi$
Down Yukawa Coupling	$M_{10}M_{\bar{5}}H_d$	$\sigma + \tau + \delta = 2\pi$
Majorana Neutrino Masses	$H_d H_d M_{\overline{5}} M_{\overline{5}}$	$2\alpha + 2\tau = 2\pi$
Triplet Masses	DDc	$\alpha + \gamma = 2\pi.$

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Discrete symmetry revisited

Find the solution

$$\alpha = -2\sigma, \gamma = 2\sigma, \delta = -3\sigma + \pi, \tau = 2\sigma + \pi, \sigma = \sigma$$

• Then forbid μ -term and R-parity violation

	Coupling	Constraint
$\mu-{ m term}$	$H_d H_u$	$-5\sigma + \pi \neq 2\pi$
R-Parity	$M_{10}M_{10}M_{\bar{5}}$	$5\sigma eq 2\pi$
	$M_{\bar{5}}H_u$	$\pi eq 2\pi$

イロト イポト イヨト イヨト

Discrete symmetry revisited

- Can this symmetry be broken and preserve R-parity?
- Yes
- Example $N = 6, \sigma = 2\pi/6$

	Coupling	Charge	\mathcal{Z}_6
$\mu - term$	$H_d H_u$	$-5\sigma+\pi$	$e^{i2\pi \frac{4}{6}}$
R-Parity	$M_{10}M_{\bar{5}}M_{\bar{5}}$	5 σ	$2e^{i2\pi \frac{5}{6}}$
	$M_{\bar{5}}H_u$		$e^{i2\pirac{3}{6}}$

- Vevs of moduli transforming as $z \to e^{i2\pi \frac{2}{6}}z$ preserve *R*-Parity
- Why do we live in this vacuum?

<ロ> (四) (四) (三) (三) (三)

Discrete symmetry revisited

- Can this symmetry be broken and preserve R-parity?
- Yes
- Example $N = 6, \sigma = 2\pi/6$

	Coupling	Charge	\mathcal{Z}_{6}
$\mu-{\rm term}$	$H_d H_u$	$-5\sigma + \pi$	$e^{i2\pirac{4}{6}}$
R-Parity	$M_{10}M_{\bar{5}}M_{\bar{5}}$	5σ	$2e^{i2\pi \frac{5}{6}}$
	$M_{\bar{5}}H_u$	π	$e^{i2\pirac{3}{6}}$

- Vevs of moduli transforming as $z \to e^{i2\pi\frac{2}{6}}z$ preserve *R*-Parity
- Why do we live in this vacuum?

<ロ> (四) (四) (三) (三) (三)

Summary

- M-Theory is awesome.
- R-parity is non-generic.
- Geometric symmetries may or may not be enough.
- Simple GUT models in M-Theory will not provide R-parity.
- Outlook
 - Look for a stable LSP: Non-GUT *U*(1)s, moduli vacuum, Monodromies . . .

イロン 不得 とくほ とくほとう

ъ

$$\begin{split} E_8 \to E_6 \times SU(3) \\ \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_8 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} 27 \begin{cases} 16_1 \begin{cases} 10_{-1} \begin{cases} Q & (3,2)_1 & -1 & 1 \\ e^e & (1,1)_6 & -1 & 1 \\ 15_3 \begin{cases} d^e & (3,1)_2 & 3 & 1 \\ L & (1,2)_3 & 3 & 1 \\ 1.5 & P^e & (1,1)_0 & -5 & -1 \\ 10_{-2} \begin{cases} 52 \begin{cases} D & (3,1)_2 & 2 & -2 \\ H_u & (1,2)_3 & 2 & -2 \\ 10_{-2} \begin{cases} 52 \\ H_u & (1,2)_3 & 2 & -2 \\ 10_{-2} \begin{cases} 52 \\ H_u & (1,2)_3 & 2 & -2 \\ 10_{-2} \begin{cases} 52 \\ H_u & (1,2)_3 & 2 & -2 \\ 10_{-2} \begin{cases} 52 \\ H_u & (1,2)_3 & 2 & -2 \\ 10_{-2} \begin{cases} 52 \\ H_u & (1,2)_3 & 2 & -2 \\ 10_{-2} \begin{cases} 52 \\ H_u & (1,2)_3 & 2 & -2 \\ 10_{-2} \begin{cases} 52 \\ H_u & (1,2)_3 & 2 & -2 \\ 10_{-2} \begin{cases} 52 \\ H_u & (1,2)_3 & 2 & -2 \\ 10_{-2} \begin{cases} 52 \\ H_u & (1,2)_3 & 2 & -2 \\ 10_{-2} \begin{cases} 52 \\ H_u & (1,2)_3 & 2 & -2 \\ 10_{-2} \begin{cases} 52 \\ H_u & (1,2)_3 & 2 & -2 \\ 10_{-2} \\ H_d & (1,2)_3 & 2 & -2 \\ 10_{-2} \\ H_d & (1,2)_3 & 2 & -2 \\ 10_{-2} \\ H_d & (1,2)_3 & 2 & -2 \\ 10_{-2} \\ H_d & (1,2)_3 & 2 & -2 \\ 10_{-2} \\ H_d & (1,2)_{-3} & -2 & -2 \\ 10_{-2} \\ H_d & (1,2)_{-3} & -2 & -2 \\ 10_{-2} \\ H_d & (1,2)_{-3} & -2 & -2 \\ 10_{-2} \\ H_d & (1,2)_{-3} & -2 & -2 \\ 10_{-2} \\ H_d & (1,2)_{-3} & -2 & -2 \\ 10_{-2} \\ H_d & (1,2)_{-3} & -2 & -2 \\ 10_{-2} \\ H_d & (1,2)_{-3} & -2 & -2 \\ 10_{-2} \\ H_d & (1,2)_{-3} & -2 & -2 \\ 10_{-2} \\ H_d & (1,2)_{-3} & -2 & -2 \\ H_d & H_d & H_d & -2 & -2 \\ H_d & H_d & H_d & -2 & -2 \\ H_d & H_d & H_d & -2 & -2 \\ H_d & H_d & H_d & -2 & -2 \\ H_d & H_d & H_d & -2 & -2 \\ H_d & H_d & H_d & H_d & H_d & -2 \\ H_d & H_d$$

Eric Kuflik The LSP in M-Theory

E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}$ - Flipped SU(5)

• E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}$

- Can be broken by $H = \langle 10_{-1} \rangle, \overline{H} = \langle \overline{10}_1 \rangle$
- $W \supset HHh + \overline{H}\overline{H}\overline{h}$ Solves D/T Splitting
- Will break R-Parity
- Will need GUT scale vev
- Even if we could

 $K \supset (Im z_j + i Im z_k)(H_{10}M_{10}M_{10}M_{\bar{5}})$

 $W \supset \frac{m_{1/2}m_{GUT}}{m_p^2} M_{10}M_{10}M_{\overline{5}}$ LSP decays as before

Eric Kuflik

$E_6 \rightarrow S$	$SO(10)_{\eta}$	$\rightarrow SU($	$(5)_{\chi}$	SM imes U	$(1)_{\chi}$	$\times U(1)_{\eta}$
		(Q	$(3,2)_1$	-1	1
27 <	ſ	10_{-1}	u^c	$(\bar{\bf 3}, {\bf 1})_{4}$	-1	1
	$\left(\begin{array}{c} 16_1 \end{array} \right)$	l	e^{c}	$(1,1)_6$	-1	1
		Ē.∫	d^c	$(\overline{3},1)_2$	3	1
		3 $\left(\right)$	L	$(1, 2)_{3}$	3	1 /
	l	1_{-5}	ν^{c}	$(1, 1)_0$	-5	1 /
	10-2	5 ₂ ∫	D	$({\bf 3},{\bf 1})_{\!-\!2}$	2	-2
		ັ ໂ	H_u	$(1, 2)_3$	2	-2
		$\overline{5} \circ \int I$	D^c	$(\overline{3},1)_2$	-2	-2
	l	I_d		$(1, 2)_{-3}$	-2	-2
	1_4	1_0	S	$(1, 1)_0$	0	4

E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}$ - Flipped SU(5)

- $E_6, SO(10) \rightarrow SU(5) \times U(1)_{\chi}$
- Can be broken by $H = \langle 10_{-1} \rangle, \overline{H} = \langle \overline{10}_1 \rangle$
- $W \supset HHh + \bar{H}\bar{H}\bar{h}$ Solves D/T Splitting
- Will break R-Parity
- Will need GUT scale vev
- Even if we could

 $\begin{array}{c} \underline{E_6 \rightarrow SO(10)_{\eta} \rightarrow SU(5)_{\chi} \quad SM \times U(1)_{\chi} \times U(1)_{\eta}} \\ & \left\{ \begin{array}{c} \mathbf{10}_{-1} \left\{ \begin{array}{ccc} Q & (\mathbf{3}, \mathbf{2})_{1} & -1 & 1 \\ u^c & (\mathbf{3}, \mathbf{1})_{-4} & -1 & 1 \\ \overline{c^c} & (\mathbf{1}, \mathbf{1})_{\mathbf{6}} & -1 & -1 \\ \overline{c^c} & (\mathbf{1}, \mathbf{1})_{\mathbf{6}} & -1 & -1 \\ \overline{c^c} & (\mathbf{1}, \mathbf{1})_{\mathbf{6}} & -1 & -1 \\ 1_{-5} & u^c & (\mathbf{1}, \mathbf{1})_{-3} & 3 & 1 \\ \mathbf{1}_{-5} & v^c & (\mathbf{1}, \mathbf{1})_{0} & -5 & 1 \end{array} \right\} \\ \mathbf{27} \left\{ \begin{array}{c} \mathbf{27} \left\{ \begin{array}{c} \mathbf{10}_{-2} \left\{ \begin{array}{c} \mathbf{5}_{2} & \left\{ \begin{array}{c} D \\ H_{u} \end{array} \right| & (\mathbf{1}, \mathbf{2})_{-3} & 2 & -2 \\ \mathbf{10}_{-2} \left\{ \begin{array}{c} \mathbf{5}_{2} & \left\{ \begin{array}{c} D \\ H_{u} \end{array} \right| & (\mathbf{1}, \mathbf{2})_{-3} & -2 & -2 \\ \overline{\mathbf{5}}_{-2} & \left\{ \begin{array}{c} D^e \\ H_{d} \end{array} \right| & (\mathbf{1}, \mathbf{2})_{-3} & -2 & -2 \\ \mathbf{14} & \mathbf{10} & S \end{array} \right\} \right. \end{array} \right. \end{array} \right. \end{array} \right.$

ヘロト 人間 ト ヘヨト ヘヨト

 $K \supset (\operatorname{Im} z_j + i \operatorname{Im} z_k)(H_{10}M_{10}M_{10}M_{\overline{5}})$

 $ightarrow W \supset rac{m_{1/2} m_{GUT}}{m_p^2} M_{10} M_{10} M_{ar{5}}$

LSP decays as before

Eric Kuflik

E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}$ - Flipped SU(5)

- E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}$ • Can be broken by
 - $H = \langle 10_{-1} \rangle, \bar{H} = \langle \bar{10}_1 \rangle$
- $W \supset HHh + \bar{H}\bar{H}\bar{h}$ Solves D/T Splitting
- Will break R-Parity
- Will need GUT scale vev
- Even if we could

 $\begin{array}{c|c} \underline{E_{6} \rightarrow SO(10)_{\eta} \rightarrow SU(5)_{\chi}} & SM \times U(1)_{\chi} \times U(1)_{\eta} \\ \hline \\ E_{6} \rightarrow SO(10)_{\eta} \rightarrow SU(5)_{\chi} & SM \times U(1)_{\chi} \times U(1)_{\eta} \\ \hline \\ 10_{-1} \begin{cases} Q & (\mathbf{3}, \mathbf{2})_{1} & -1 & 1 \\ u^{c} & (\mathbf{3}, \mathbf{1})_{-4} & -1 & 1 \\ \hline \\ \overline{\mathbf{5}}_{3} & \left\{ \begin{array}{c} U^{c} & (\mathbf{3}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{3} & \left\{ \begin{array}{c} U^{c} & (\mathbf{3}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{3} & \left\{ \begin{array}{c} U^{c} & (\mathbf{1}, \mathbf{1})_{6} & -1 & -1 \\ 1 & \mathbf{5}_{3} & \left\{ \begin{array}{c} U^{c} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & \left\{ \begin{array}{c} U^{c} & (\mathbf{1}, \mathbf{1})_{-6} & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & \left\{ \begin{array}{c} U^{c} & (\mathbf{1}, \mathbf{1})_{-6} & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{1}, \mathbf{1})_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & (\mathbf{5}_{-6} & -1 & -1 \\ 1 & \mathbf{5}_{-6} & -1 & -1 \\ 1 & \mathbf{$

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $K \supset (Im z_j + i Im z_k)(H_{10}M_{10}M_{10}M_{5})$

 $W \supset \frac{m_{1/2}m_{GUT}}{m_p^2} M_{10}M_{10}M_{\bar{5}}$

LSP decays as before

Eric Kuflik

E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}$ - Flipped SU(5)

- E_6 , $SO(10) \rightarrow SU(5) \times U(1)_{\chi}$ • Can be broken by $H = \langle 10_{-1} \rangle$, $\bar{H} = \langle \bar{10}_1 \rangle$
- $W \supset HHh + \bar{H}\bar{H}\bar{h}$ Solves D/T Splitting
- Will break R-Parity
- Will need GUT scale vev
- Even if we could

 $K \supset (Im z_j + i Im z_k)(H_{10}M_{10}M_{10}M_{\bar{5}})$

$$\rightarrow W \supset \frac{m_{1/2}m_{GUT}}{m_p^2} M_{10}M_{10}M_{\bar{5}} \qquad \text{LSP decays as before}$$

Eric Kuflik

$$\begin{array}{c} \underline{E_6 \rightarrow SO(10)_{\eta} \rightarrow SU(5)_{\chi}} & SM \times U(1)_{\chi} \times U(1)_{\eta} \\ & \left\{ \begin{array}{c} \mathbf{10}_{-1} \left\{ \begin{array}{c} Q \\ u^c \\ u^c \\ \overline{\mathbf{3}}, \mathbf{1}_{-4} & -1 & 1 \\ \frac{Q}{c^c} \\ (\mathbf{1}, \mathbf{1})_{\overline{\mathbf{6}}} & -4 & -1 \\ \overline{\mathbf{5}}_3 \\ \mathbf{1}_{-5} \\ \mathbf{10}_{-5} \\ \mathbf{10}_{-2} \\ \end{array} \right\} \\ \mathbf{27} \left\{ \begin{array}{c} \mathbf{16}_1 \\ \mathbf{16}_1 \\ \mathbf{16}_1 \\ \mathbf{16}_2 \\ \mathbf{10}_2 \\ \mathbf{10$$

 $E_6
ightarrow SU(5) imes U(1)_\chi imes U(1)_\eta$

•
$$E_6 \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\eta}$$

• $U(1)_{\eta}$ Can be broken by $\langle S \rangle, \langle \bar{S} \rangle$
• Will break R-Parity

$$K \supset (\operatorname{Im} z_j + i \operatorname{Im} z_k)(\langle \bar{S} \rangle H_{10} M_{10} M_{10} M_{\bar{5}}) =$$

$$\rightarrow W \supset \frac{m_{1/2}m_{GUT}\langle \bar{S}\rangle}{m_p^3} M_{10}M_{10}M_{\bar{5}}$$

LSP is stable enough for $\langle ar{S}
angle \sim rac{m_{3/2}}{m_{
m p}}$

 $\begin{array}{c|c} \underline{E_{6} \rightarrow SO(10)_{\eta} \rightarrow SU(5)_{\chi}} & SM \times U(1)_{\chi} \times U(1)_{\eta} \\ \hline \\ E_{6} \rightarrow SO(10)_{\eta} \rightarrow SU(5)_{\chi} & SM \times U(1)_{\chi} \times U(1)_{\eta} \\ \hline \\ 10_{-1} \begin{cases} Q & (\mathbf{3}, \mathbf{2})_{1} & -1 & 1 \\ u^{c} & (\mathbf{3}, \mathbf{1})_{-4} & -1 & 1 \\ \hline \\ \mathbf{5}_{3} & \left\{ \begin{array}{c} U^{c} & (\mathbf{3}, \mathbf{1})_{-6} & -\mathbf{1} & -\mathbf{1} \\ \hline \\ \mathbf{5}_{3} & \left\{ \begin{array}{c} U^{c} & (\mathbf{3}, \mathbf{1})_{-6} & -\mathbf{1} & -\mathbf{1} \\ \hline \\ \mathbf{5}_{3} & \left\{ \begin{array}{c} U^{c} & (\mathbf{3}, \mathbf{1})_{-2} & 3 & -\mathbf{1} \\ \mathbf{1}_{-5} & \nu^{c} & (\mathbf{1}, \mathbf{1})_{0} & -\mathbf{5} & 1 \\ \hline \\ \mathbf{1}_{-5} & \nu^{c} & (\mathbf{1}, \mathbf{1})_{0} & -\mathbf{5} & 1 \\ \hline \\ \mathbf{10}_{-2} & \left\{ \begin{array}{c} \mathbf{5}_{2} & \left\{ \begin{array}{c} D & (\mathbf{3}, \mathbf{1})_{-2} & 2 & -2 \\ H_{u} & (\mathbf{1}, \mathbf{2})_{-3} & 2 & -2 \\ \hline \\ \mathbf{5}_{-2} & \left\{ \begin{array}{c} D^{c} & (\mathbf{3}, \mathbf{1})_{2} & -2 & -2 \\ H_{d} & (\mathbf{1}, \mathbf{2})_{-3} & -2 & -2 \\ H_{d} & (\mathbf{1}, \mathbf{2})_{-3} & -2 & -2 \\ \end{array} \right\} \end{cases} \end{cases} \end{cases} \end{array} \right.$

ヘロン 人間 とくほ とくほ とう

 $\overline{E_6} \rightarrow SU(5) \times U(1)_{\gamma} \times U(1)_n$

•
$$E_6
ightarrow SU(5) imes U(1)_\chi imes U(1)_\eta$$

$$ightarrow W \supset rac{m_{1/2}m_{GUT}\left}{m_p^3}M_{10}M_{10}M_{ar{5}}$$

 $E_6 \rightarrow SO(10)_\eta \rightarrow SU(5)_\chi \quad SM \times U(1)_\chi \times U(1)_\eta$
$$\begin{split} & E_{6} \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\eta} \\ & U(1)_{\eta} \text{ Can be broken by } \langle S \rangle, \langle \bar{S} \rangle \\ & \text{Will break R-Parity} \\ & \mathcal{K} \supset (Im \, z_{j} + i \, Im \, z_{k})(\langle \bar{S} \rangle \, H_{10} M_{10} M_{\bar{5}}) \\ & \rightarrow \mathcal{W} \supset \frac{m_{1/2} m_{GUT} \, \langle \bar{S} \rangle}{m_{3}^{2}} M_{10} M_{10} M_{\bar{5}} \end{split} 27 \begin{cases} \frac{16_{13}}{10_{13}} \frac{10_{13}}{10_{13}} \frac{10_$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $\overline{E_6}
ightarrow SU(5) imes U(1)_\chi imes U(1)_\eta$

•
$$E_6
ightarrow SU(5) imes U(1)_\chi imes U(1)_\eta$$

- $U(1)_{\eta}$ Can be broken by $\langle S \rangle, \langle \bar{S} \rangle$
- Will break R-Parity

$$K \supset (\operatorname{Im} z_j + i \operatorname{Im} z_k)(\langle \bar{S} \rangle H_{10} M_{10} M_{10} M_{\bar{5}})$$

$$ightarrow W \supset rac{m_{1/2} m_{GUT} \left\langle ar{S}
ight
angle}{m_{
ho}^3} M_{10} M_{10} M_{ar{5}}$$

LSP is stable enough for $\left< ar{S} \right> \sim rac{m_{3/2}}{m_{
m p}}$

 $\begin{array}{c|c} \underline{E_{6} \rightarrow SO(10)_{\eta} \rightarrow SU(5)_{\chi}} & SM \times U(1)_{\chi} \times U(1)_{\eta} \\ \hline \\ E_{6} \rightarrow SO(10)_{\eta} \rightarrow SU(5)_{\chi} & SM \times U(1)_{\chi} \times U(1)_{\eta} \\ \hline \\ 10_{-1} \begin{cases} Q & (\mathbf{3}, \mathbf{2})_{1} & -1 & 1 \\ u^{c} & (\mathbf{3}, \mathbf{1})_{-4} & -1 & 1 \\ \hline \\ \mathbf{5}_{3} & \left\{ \begin{array}{c} U^{c} & (\mathbf{3}, \mathbf{1})_{-2} & 3 & 1 \\ 1 & (\mathbf{1}, \mathbf{2})_{-3} & 3 & 1 \\ 1 & -5 & \nu^{c} & (\mathbf{1}, \mathbf{1})_{0} & -5 & 1 \end{array} \right. \\ \hline \\ \mathbf{27} \begin{cases} \mathbf{16}_{1} & \left\{ \begin{array}{c} \mathbf{5}_{2} & \left\{ \begin{array}{c} D & (\mathbf{3}, \mathbf{1})_{-2} & 2 & -2 \\ \mathbf{10}_{-2} & \left\{ \begin{array}{c} \mathbf{5}_{2} & \left\{ \begin{array}{c} D & (\mathbf{3}, \mathbf{1})_{-2} & 2 & -2 \\ H_{u} & (\mathbf{1}, \mathbf{2})_{3} & 2 & -2 \\ \hline \mathbf{5}_{-2} & \left\{ \begin{array}{c} D^{c} & (\mathbf{3}, \mathbf{1})_{-2} & -2 & -2 \\ H_{u} & (\mathbf{1}, \mathbf{2})_{-3} & -2 & -2 \\ H_{d} & (\mathbf{1}, \mathbf{2})_{-3} & -2 & -2 \\ \end{array} \right. \\ \hline \end{array} \end{cases}$

ヘロン 人間 とくほ とくほ とう

ъ

 $E_6,
ightarrow SU(5) imes U(1)_\chi imes U(1)_\eta$

