Global aspects of the space of 6D string vacua

SVP meeting, Spring 2010 KITP, Santa Barbara

May 4, 2010

Washington (Wati) Taylor, MIT

arXiv: 0903.0386, 0906.0987, 0910.1586

V. Kumar, WT

arXiv: 0911.3393, 1005.nnnn, 10mm.nnnn

V. Kumar, D. Morrison, WT

Based on:

Grappling with the landscape

• Many apparently consistent string vacua in 4D (tip of iceberg?)

• Even more vast range of 4D QFT + gravity without known inconsistencies Apparent 4D swampland $\mathcal{G} \setminus \mathcal{V}$ is vast [Vafa, Ooguri/Vafa] Hard to attain global picture in 4D.

Point of this talk:

Global analysis, mapping landscape seems tractable for 6D $\mathcal{N}=1$ SUGRA

Program: systematically analyze \mathcal{G} for 6D $\mathcal{N}=1$ SUGRA Find map $\mathcal{G} \to \mathcal{V}$ where possible (uniqueness?), chart regions

If $x \in \mathcal{G} \setminus \mathcal{V}$, must indicate one of

- a) new string construction: $\mathcal{V}'\supset\mathcal{V}$
- b) new low-E constraint: $\mathcal{G}' \subset \mathcal{G}$
- c) true stringy constraint

Three approaches to understanding string vacua

Search for Standard Model-like vacua: string construction → EFT

- (+) Useful for developing technology
- (+) Understand components corresponding to SM features
- (-) Doesn't give insight into constraints

Generate classes of vacua, do statistics, seek patterns

- (+) Technology as above + constraints/distribution in class of constructions
- (-) In 4D only piece of picture, connecting classes, swampland unclear

Study global structure of \mathcal{G}, \mathcal{V}

- (-) Hard in 4D
- (+) Understand global string constraints, map EFT → ST May be possible in 6D, lessons for 4D.

Outline

Bounds and lattices for 6D supergravity

2 Map to F-theory

Summary and lessons for SVP

1. Bounds and lattices for 6D supergravity

- Focus on 6D $\mathcal{N} = (1,0)$ supersymmetric theories w/gravity
- Originally studied in mid 80's [Nishino/Sezgin (T = 1), Romans (T > 1)]

• (1, 0) 6D SUSY fields

Multiplet	Matter Content
SUGRA	$(g_{\mu\nu}, B_{\mu\nu}^-, \psi_\mu^-)$
Tensor (T)	$(B_{\mu\nu}^+, \phi, \chi^+)$
Vector (V)	(A_{μ}, λ^{-})
Hyper (H)	$(4\varphi,\psi^+)$

- Semi-simple group $\mathcal{G} = G_1 \times G_2 \times \cdots \times G_k$ (/ Γ) [ignore U(1)'s]
- Matter \mathcal{M} in (generally reducible) representation of G
- Tensors transform under SO(1,T), ϕ 's $\rightarrow j \in SO(1,T)/SO(T)$

Question: what combinations of \mathcal{G} , \mathcal{M} , T possible?

Claim: For T < 9, only a finite set of possible \mathcal{G} , \mathcal{M} [proven for T = 1 in arXiv:0910.1586; T > 1 in KMT paper to appear]

Key: anomaly cancellation [Green/Schwarz, G/S/West, Sagnotti, Sadov]

$$\boxed{I_8 = \frac{1}{2} \Omega_{\alpha\beta} X_4^{\alpha} X_4^{\beta} \qquad X_4^{\alpha} = \frac{1}{2} a^{\alpha} \text{tr} R^2 + \sum_i b_i^{\alpha} \left(\frac{2}{\lambda_i} \text{tr} F_i^2 \right)}$$

$$\operatorname{sign}(\Omega) = (+, -, -, -, \ldots), \ a^{\alpha}, b_i^{\alpha} \in \mathbb{R}^{1,T}, \ \operatorname{tr} \to \lambda_{SU(N)} = 1, \lambda_{E_8} = 60, \ldots$$

$$T=1$$
 :
$$\Omega_{\alpha\beta}=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad a=(-2,-2), \quad b=\frac{1}{2}(\alpha,\tilde{\alpha})$$

$$I_8=X^1X^2=(\mathrm{tr}R^2-\sum_i\alpha_i\mathrm{tr}F_i^2)(\mathrm{tr}R^2-\sum_i\tilde{\alpha}_i\mathrm{tr}F_i^2)$$

Further constraint: physical kinetic terms [Sagnotti]

SUSY
$$\rightarrow -j \cdot b \text{ tr} F^2 \rightarrow j \cdot b > 0$$
 $(j \cdot b = e^{\phi} \alpha + e^{-\phi} \tilde{\alpha} \text{ for } T = 1)$

Anomaly conditions for factorization:

$$I_8 = \frac{1}{2}\Omega_{\alpha\beta} \left(\frac{1}{2} a^{\alpha} \text{tr} R^2 + 2b_i^{\alpha}/\lambda_i \text{ tr} F_i^2 \right) \left(\frac{1}{2} a^{\beta} \text{tr} R^2 + 2b_i^{\beta}/\lambda_i \text{ tr} F_i^2 \right)$$

give relations:

$$R^{4}: \quad H - V = 273 - 29T \qquad \qquad H - V \sim \text{partition bound}$$

$$F^{4}: \quad 0 = B_{Adj}^{i} - \sum_{R} x_{R}^{i} B_{R}^{i}$$

$$(R^{2})^{2}: \quad a \cdot a = 9 - T \qquad \qquad A_{R}, B_{R}, C_{R} \text{ from expanding :}$$

$$F^{2}R^{2}: \quad a \cdot b_{i} = \frac{1}{6} \lambda_{i} \left(A_{Adj}^{i} - \sum_{R} x_{R}^{i} A_{R}^{i} \right) \qquad \text{tr}_{R}F^{2} = A_{R} \text{tr}F^{2}$$

$$(F^{2})^{2}: \quad b_{i} \cdot b_{i} = \frac{1}{3} \lambda_{i}^{2} \left(\sum_{R} x_{R}^{i} C_{R}^{i} - C_{Adj}^{i} \right) \qquad \text{tr}_{R}F^{4} = B_{R} \text{tr}F^{4} + C_{R} (\text{tr}F^{2})^{2}$$

$$F_{i}^{2}F_{i}^{2}: \quad b_{i} \cdot b_{i} = 2 \sum_{R} c_{R} x_{R}^{i} A_{R}^{j}$$

Remarkable fact: $a \cdot a, a \cdot b_i, b_i \cdot b_i, b_i \cdot b_j \in \mathbb{Z}$ if no local/global anomalies.

Defines integral lattice $\Lambda \subset \mathbb{R}^{1,T}$ [Proof in upcoming KMT paper]

Proof of finite possible \mathcal{G} , \mathcal{M} in consistent 6D SUGRA's with T < 9

For fixed \mathcal{G} , T, finite possible \mathcal{M} from H - V = 273 - 29T. So must have unbounded \mathcal{G} , prove impossible by contradiction

Case 1:
$$\{G = G_1 \times \cdots \times G_k\}, |G_i| \leq D, k \to \infty$$

Use (1, T) geometry, bound on matter: $H \le 273 - 29T + kD$;

classify
$$\left\{ \begin{array}{l} b^2 > 0: \mathbf{P} \\ b^2 = 0: \mathbf{Z} \\ b^2 < 0: \mathbf{N} \end{array} \right.$$

P:
$$b_i = (x_i, \vec{y}_i), |x_i| > |\vec{y}_i| \Rightarrow b_i \cdot b_j > 0 \Rightarrow \text{ at most } \mathcal{O}(\sqrt{k \ln k}) \text{ type P's}$$

N: At most T mutually orthogonal with $b_i^2 < 0, b_i \cdot b_j = 0$ Turán's theorem: graph on n nodes with $> (1 - 1/T)n^2/2$ edges $\supset T$ -clique \Rightarrow at most $\mathcal{O}(\sqrt{k \ln k})$ type N's

Z: $b_i \cdot b_j > 0$ if not parallel, $\to \mathcal{O}(k)$ parallel (all but $\mathcal{O}(\ln k)$ Z's) All Z's have positive H - V (explicit check) \Rightarrow exceed bound, contradiction $\forall T$.

Case 2:
$$|G_1| \to \infty$$

Only limited possibilities for factors of unbounded dimension

- Schwarz: Two T = 1 families: $SU(N) \times SU(N)$, $SO(2N + 8) \times Sp(N)$
- Also: $SU(N) \times SO(N+8)$, $SU(N) \times SU(N+8)$, $Sp(N) \times SU(2N+8)$
- T > 1: Three 3-factor families $\sim SU(N-8) \times SU(N) \times SU(N+8)$

e.g.
$$SU(N) \times SU(N)$$
, matter = $2 \times (\Box, \overline{\Box})$

$$a \cdot b_1 = a \cdot b_2 = 0$$
, $b_1^2 = b_2^2 = -2$, $b_1 \cdot b_2 = 2$

Families all have common problem for $a^2 > 0$ (T < 9)

$$a \cdot (b_1 + b_2) = 0$$
 & $(b_1 + b_2)^2 = 0$ \Rightarrow $b_1 + b_2 = 0$
 $\Rightarrow j \cdot b_1 = -j \cdot b_2 \Rightarrow \text{bad kinetic terms}$

Proven finite models for T < 9; Proof fails at T > 9

What happens at T = 9?

Infinite families with anomaly cancellation, ok kinetic terms

$$e.g. \text{ for } SU(N) \times SU(N) \text{ family, } \Omega = \text{diag } (+1,-1,-1,\ldots), j = (1,0,0\ldots)$$

$$a = (2,1,1,1,1,0,0,0,0,0)$$

$$b_1 = (1,1,1,0,0,1,0,0,0,0)$$

$$b_2 = (1,0,0,1,1,-1,0,0,0,0)$$

Summary so far:

- Each consistent 6D SUGRA \Rightarrow integral lattice Λ
- Finite gauge group, matter combinations for T < 9
- T = 1 models can be enumerated; e.g. 16,418 with $\prod_i SU(N_i)$, matter \square, \square
- Infinite families at $T \ge 9$

Analysis so far independent of string theory. Which models have string realizations?

2. Mapping supergravity theories to F-theory

F-theory: IIB with variable axiodilaton τ (7-branes \rightarrow fiber singularities)

Kodaira condition for X = CY ($K_X = 0$)

$$-12K = \Delta = \sum_{i} \nu_i \xi_i + Y$$

X = elliptic fibration over B

K = canonical class of B

 $\Delta = \text{singularities}; \, \xi_i \, \text{divisors} \rightarrow G_i$

Intersection form on $B \Rightarrow$ unimodular lattice

e.g.
$$U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 for \mathbb{F}_{2m} , diag $(+1, -1, -1, \dots)$ (for blow-up of $\mathbb{F}_n, \mathbf{P}^2$)

Identifying topological F-theory data from SUGRA structure

 $T = h_{1,1}(B) - 1$; each factor G_i maps to singular divisor ξ_i

matches [Sadov, Grassi-Morrison]
$$\begin{array}{l} -a \cdot b = -K \cdot \xi_i \\ b_i \cdot b_j = \xi_i \cdot \xi_j \end{array}$$

F-theory construction only possible under certain conditions, such as

- unimodular embedding
- $b_i^2 < 0 \rightarrow b_i$ primitive $(b_i \neq n\tilde{b}_i)$
- $j \cdot a > 0$; $j \cdot Y = j \cdot (-12a \sum_{i} \nu_{i} \xi_{i}) > 0$
- Weierstrass model $y^2 = x^3 + fx + g$, f, g sections of -4K, -6K

Question: how do these constraints appear in SUGRA?

Examples: 6D supergravity and F-theory images

- Looked at 16,418 T=1 models with $G=\prod_i SU(N_i)$, matter \Box, \Box
- –all seem topologically consistent with F-theory on $\mathbb{F}_{0,1,2}$
- -identified some Weierstrass models
- -# DOF = 273 − 29 = 244; imposing \mathcal{G} , \mathcal{M} ⇒ H V constraints seems plausible all admit Weierstrass models
- Exotic matter representations \rightarrow unknown F-theory singularities (T=1)

$$-e.g. \square + 3 \square + 2 \square + 2 \square + \square$$
, $H - V = 243$

- Some \mathcal{G} , \mathcal{M} topologically inconsistent w/F-theory (rare at T=1)
- -e.g. *SU*(4) with 1 adjoint, 10 × \square + 40 × \square :

$$\Lambda = \begin{pmatrix} 8 & 10 \\ 10 & 10 \end{pmatrix}$$
 admits no unimodular embedding

-e.g. $SO(8) \times SU(24)$, embedding ok but J outside Kähler cone

Infinite families revisited

• Recall infinite $SU(N) \times SU(N)$ family at T = 9

$$a \cdot (b_1 + b_2) = 0 \& (b_1 + b_2)^2 = 0$$

When $a^2 = 0$, this implies $b_1 + b_2 = na$. a primitive $\rightarrow n \in \mathbb{Z}$.

Kodaira constraint
$$\rightarrow j \cdot Y = j \cdot (12a - N(b_1 + b_2)) > 0$$

limits
$$N \leq 12$$
 in F-theory

[N = 8: Dabholkar/Park].

• More work needed to rule out other infinite families

Family:
$$G = E_8^k$$
, $T = 8k$, $a \cdot b_i = -10$, $b_i^2 = -12$, $b_i \cdot b_j = 0$, $i \neq j$.

Can find acceptable supergravity lattice. Seiberg-Witten: k = 2, T = 25.

Does not violate case 1 as $T \to \infty$. F-theory??

3. Summary and lessons for SVP

Global picture of $\mathcal{N} = 1$ 6D SUGRA

(cartoon)

- Each $\mathcal{G}, \mathcal{M} \to \text{continuous}$ (quaternionic) moduli space
- Connected by Higgs/small instanton/massless string transitions
 [Witten, Duff/Minasian/Witten, Seiberg/Witten, Morrison/Vafa, KMT III]
- ullet May be possible to chart regions, connect \to one theory (string universality?)

Summary:

- ullet Each consistent supergravity theory is associated with an integral lattice Λ
- Λ , vectors $a, b_i \rightarrow$ structure of F-theory compactification.
- $\mathcal{N} = 1$ 6D supergravity has finite groups, matter for T < 9.
- For *T* > 8 there are infinite families of SUGRA models. Some of these families are inconsistent in F-theory.

We have begun to map the 6D supergravity landscape.

- ? Can we map other string regions, perhaps using Λ ? Many other 6D string constructions from heterotic (T = 1), orientifolds (T > 1), etc. Some evidence: most other constructions \subset F-theory (need G-flux in F-theory)
- ? Can we identify new low-energy constraints based on properties like
 - Unimodular lattice embedding?
 - $-j \cdot a > 0$, Kodaira condition? (may be related to $j \cdot a$ tr R^2 [\sim AADNR?])
- ? Identify new phases of string theory (non-geometric F-theory?)

Qualitative lessons from 6D which may be relevant to 4D, SVP

- String theory → strong constraints on low E theory
- Many if not all constraints visible in LET
- Can map low E data → string theory
- String realizations of low E physics ~ unique up to duality (though may involve all structure to high E scale if true in 4D)
- Generally F-theory ⊃ other constructions (modulo G-flux)
- Moduli spaces of vacua generically connected