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The physical properties of most theories of particle
physics depend intimately on their vacuum structures,
and string theory is no exception.

How is SUSY broken, if it's broken at all?

What other symmetries are manifest at low energies?

Do metastable vacua exist in addition to the ground state?

If so, what are their lifetimes?

What about vacuum energy?

The point is this: the vacuum structure of any given model plays
a significant, and often dominant, role in its phenomenology.




If fact, in studies of the string landscape, the stakes
may be even higher:

As we shall demonstrate, many structures expected to occur
generically on the string landscape give rise to vast numbers of
metastable minima.

Such minima are important for a variety of reasons:

e They have markedly different phenomenologies than the true ground
states hence, theories whose true ground states are not viable may
actually be viable after all.

e They can significantly affect vacuum counting in statistical studies
of the string landscape, and even dominate the landscape, if the
number of metastable vacua is large.

e They may be populated (perhaps even preferentially) in thermal the-
ories, in the early universe.




Furthermore, they also have a host of phenomenological
Implications, including:

% New scenarios for metastable SUSY-breaking in SUSY theories.

e Metastable vacua arise at tree level, and all of the relevant
dynamics is perturbative. Dienes, BT [arXiv:0806.3364]

e No cumbersome nonperturbative dynamics: lifetimes and
transition rates can be calculated reliably.

Transitions between these minima that give rise to a highly
nontrivial system of vacuum dynamics. Dienes, BT [arXiv:08113335]

e Possible implications for cosmology: (multiple, rapid phase
transitions; topological defects, etc.).

% A host of new particle states which could give rise to an
exciting Z' phenomenology at the LHC.




A Simple Abelian Scenario
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e Consider an orbifold moose diagram with N
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e Wilson line operator superpotential.




These structures are nothing special,
complicated, or esoteric.

Indeed, they are nothing but Abelian orbifold
moose constructions.

Structures of this sort arise generically in flux compactifications,
which reduce at low-energies to “deconstructed” supersymmetric
Abelian gauge theories.

Hence, these structures are a feature of the real string
landscape.




One More Ingredient: Kinetic Mixing

e The field-strength tensor for an Abelian gauge Supersymmetrized Kinetic

field is gauge invariant by itself. Mixing
e QOur theory contains N Abelian gauge factors, . 1 D AT - trra
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and no symmetry prevents kinetic mixing terms 32
from appearing the field Lagrangian.
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e To simplify matters, let us restrict ourselves to the case where mixing occurs only
between nearest-neighbor sites on the moose, with a common mixing angle .




In general, the kinetic mixing matrix can be diagonalized by a
rotation combined with a diagonal rescaling:

[(M_l)T]abXbcMcd — -[NXN with: Mab = Sac(’)cb

The gauge fields and D-terms in the new basis are:

o = (M~ apse ¢ Qai = [(M™)T] Qv AP = M, AY

This is a nontrivial modification of the D-term potential, and it has
physical consequences, as we shall soon see.

Now let's turn to some examples...




| 1 —x O Wl
L> 3om /d29 (WaWZWH | —x 1 —x W2
4 0 —x 1 w3

W :@131@2@3@4

e We will restrict ourselves to the case where & = & = &€ > 0 for

simplicity.

e The same qualitative behavior occurs over large regions of parame-

ter space where &; # &s.




Testing for Stability

e Extrema are given by

Scalar Potential
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e Stability of the extrema is governed by a 2(N +1) x 2(N + 1) mass matrix.

Diagonalize. .. [ One massless Nambu-Goldstone boson per

52V broken U (1), and a vacuum that’s. ..
0D; 0 ; 0 *8 : 2
M2 = igzvﬁ_bg ¢ ¢g »< Stable if all other m? > 0.
8¢18§b* aqb*agb* Unstable if m2 < 0.
J
A flat directionfor each additional m? = 0.

.




Vacuum Structure:

A
A
e For small A, the ground state of the Stable: {13}
theory is the {123} vacuum. Metastable: (12}
e Above some critical A3 ,, the {13}
vacuum becomes the ground state. N
rr
e Further increasing A beyond a second Stable: {13}
critical A3 ; results in the addition of a S -
second, metastable minimum: {12}. ’ Stable: {123}
0




A Sketch of the Vacuum Structure:

N=3
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e The vacuum energies (and field configurations) of the vacua are A-independent.

e The heights of the potential barriers separating these vacua (and hence stability)
are controlled by A.




Four U (1) gauge groups

Five chiral superfields

dim[A\] = —2

As ) increases beyond a series of critical

values, Ay ,,, new vacua become
stabilized.

n=1: {123}
n=2: {124}
n=3: {134}

k
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Stable: {134}
Metastable: {124}, {123}

Stable: {134}
Metastable: {124}

Stable: {1234}




e Here we see a tower of N — 1 vacua, with (/N — 1) choose 2 saddle point barriers
separating them.
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Same as in the N=3 case! The new vacuum

“slides in” beneath
the old vacua




The Dynamics of Vacuum Transitions

e Our theory includes multiple metastable minima. So what are the lifetimes of

these minima? To what other states do they decay?

I
[Vol.]

— Ae B

B = Sg(¢) — Se(¢+)

Bounce Action

w AV,

AV_

e The decay rate of a metastable
vacuum can be calculated by
standard, semiclassical instanton
methods [Coleman & De Luccia;
Hawking & Moss, et al.].

e Approximate the potential in the
region between stable and
metastable vacua as triangular
[Duncan & Jensen].

e The bounce action can be
determined explicitly in this case.




1000

S300

600

400

B(n,n+An)

=00

0

First,
Then,

Decay sequence:

b): {123} — {134} (n; = 1,ns = 3)
c): {124} — {134} (n; =2,n; = 3)
Then, (a): {123} — {124} (n; = 1,n; = 2)

The Result: a “collapse” to

the ground state.
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e Decays to the “bottom”

-

X

Decayed in the past

e Multiple vacuum transitions

can occur for N = 4, and

it is necessary to ask which
decay channel dominates for
a given choice of parameters.

e The results shown here are

for the large A regime.

Observations:

e Lifetimesincrease with y.

(ground state) generally
favored.




Minima on the moose

Now, we move to
the general case of
an N-site Moose.

And we find...




..a Tower of Metastable Vacua!
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e An N-site Abelian moose gives
rise to a tower of N — 1 vacua,
each with a vacuum energy and
field VEV configuration.

For large /N, many of these vacua
have small vacuum energies,
relative to the fundamental scale
in the theory.

When X is not too small, each
vacuum is separated from any
other vacuum by a unique
saddle point of type

{1,2 —1,N}.




e The vacuum energies and field VEV configurations of each vacuum in the
tower are independent of A\, and the vacuum energies themselves are also

iIndependent of N.
VEV Configurations

Vacuum Energies
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e As before, the stability of the vacua in the tower is primarily controlled by A:

e There critical A above which the n = 1 vacuum (the highest state in the tower for
0 < x < 1/2) becomes stable is given by the general expression:

........................ - 1
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Lifetimes on the tower

N Bounce Actions for Different An, n;
e In general, transitions between 2500 T T T T T T T

vacua with larger separation N=20
in vacuum energy (or large
An = ny — n;) occur
exponentially more quickly.
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e The transition from any
vacuum to the ground state
is usually much faster than n 1000
all other, competing decays. An = 14\,;
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always dominate for a given n;.

e When N becomes large, other

behavior is possible: decays to other
regions in the tower can

dominate over decays to the ground
state.

e For the values of NV shown, decays

to the ground state still dominate, but
other decay rates are exponentially
increasing.

This means that for still larger
N, we find...




... a Metastable Vacuum Cascade!

In this case, some vacua in the tower do not decay directly to the ground state.

L e . T T Vacuum decays can exhibit
600 —* N =5000 |- nontrivial cascade behavior:
-\ Stable on —98x 104 -
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Cascades, Great Walls, and a “Forbidden City”
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Evolution of Particle Spectra | @ ...y ;

The spectrum of particles in each vacuum includes
towers of scalars, fermions, and gauge bosons.
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e Each vacuum includes one massless gauge
field associated with an unbroken -
combination of U(1)’s. T

e This massless gauge field couples only to the , 3_' o
fields in the chiral supermultiplets ®_,, 1 and
® n 11, Which acquire masses m? oc A¢™V 1.

e The fields in the rest of the &, in W2 form
“towers” of massive fermions, scalars, and gauge
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This is clearly a highly nontrivial vacuum structure, and one
with a wealth of possible phenomenological applications:

e For large IV, many states in the tower will have vacuum energies
V < £2. This could be used to address the cosmological constant
problem if such states are stable on cosmological time-scales.

e One could potentially address the hierarchy between the SUSY-
breaking scale and M p in weak-scale models in the same way.

e Each vacuum generically contains a tower of massive, kinetically-
mixed gauge bosons. This can lead to interesting 72’
phenomenology at the LHC.




Summary

e Supersymmetric theories with a large number of U (1) gauge
groups can give rise to highly nontrivial vacuum structures
involving large numbers of metastable minima.

e Such structures arise generically in the full string landscape
and therefore must be contended with.

¢ A highly nontrivial set of vacuum dynamics can airse, involv-
Ing cascades of successive vacuum-transitions.

e A trove of phenomenological possibilities exist is scenario
of this sort, including ways of addressing the cosmological
constant problem, breaking SUSY, etc.

To wit, these potentials have a lot of potential!




Implications for the landscape

Most discussions of the landscape assume that the low-energy limit of a given
string model has a relatively simple field-theory structure, consisting of:

e a single vacuum state (the ground state)

e a tower of excited states built on that vacuum.

As such, the resulting phenomenology associated with that string model is
uniquely determined, and each string model corresponds to a unique possible

state for the universe:

one string model < one vacuum

SO...

counting models ~ counting vacua

But if we really want to understand the landscape, all of this is now in question!

As we've seen, the phenomenological properties of a metastable vacuum may
be completely different than those of true ground state.




The Upshot:

The one-to-one connection between models and vacua need not apply!

The full landscape of string theory can be even richer than previously imagined,
since all long-lived metastable vacua must be included in the analysis.

e The structures | have presented here, which arise generically in flux
compactifications, give rise to infinite towers of metastable vacua with higher
and higher energies!

e As the number of vacua grows towards infinity, the energy of the highest
vacuum remains fixed while the energy of the true ground state tends towards
Zero.

Thus, even if such models are relatively rare across the landscape, the fact
that they give rise to infinitely many vacua means that they could
completely dominate the properties of the landscape as a whole! But if
we really want to understand the landscape, all of this is now in question!
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