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Background

• Long lifetimes in non-magnetic 
semiconductors
– Kikkawa and Awschalom, PRL 

and Science
• Move to localized spins—qubits

and quantum information
– In III-V’s—GaAs donors provide 

a good ensemble
– Metal-insulator transition is at 2 

X 1016 cm-3

– Isolated donors for ND < 4 X   
10 14 cm-3 for B = 0 T

Dzhioev et al., Phys. Rev. 
B 66, 245204 (2002)
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Spin lifetimes for donors in GaAs
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Michael Scheibner et al., to be pub.

J.S. Colton et al., SSC 132, 613 (2004) J.S. Colton et al., PRB 69, 121307 (2004)

JSC: T1 = 24 μs for 1E15 at 7T
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Previous work leads to 

Wide Quantum Well—
Simplified energy levels 
through HH/LH splitting

Goal of Measuring T2 —Use 
pulsed magnetic resonance

Two challenges
– Low spin concentration
– Well defined nuclear spin 

state--unpolarized

T.A. Kennedy et al., PRB 73, 
045307 (2006)
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Background to This Approach

• Faraday Rotation and EPR
– R. Romestain (1980): donors in CdS

• GaAs donors
– Seck, Potemski and Wyder (1997): EPR—DNP enhanced
– Karasyuk et al. (1994): Donor-bound excitons
– Kai-Mei Fu (Stanford), Spin-flip Raman Scattering

• Nuclear Effects: ESR pinning in 2DEG’s

– Olshanetsky et al., Physica B 373, 182 (2006)
– Hillman and Jiang, PRB 64, 201308 (2001) 
– Dobers et al., PRL 61, 1650 (1988)

• ESE in GaAs

– Petta et al. Science 309, 2180 (2005)—T2 of 1 to 10 μs
– Loss (Basel), Sham (UCSD), Whaley (UCB), Das Sarma

(Maryland),ETH (Zurich), SUNY (Buffalo) and  others
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ODMR mechanism

• Polarization
– Thermal: B=6 T and T=1.5 K—

gβH~kT
– Off-cycle of microwaves long 

with respect to T1

– Thermalized electron spins: 
<ST>

• Resonance with microwaves 
reduces the polarization

– hν = gβB
– Frequency ν = 35 GHz
– Decreases the <S> from <ST>

• Detection…
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Detection  by Kerr Rotation

Simplified Optical 
Transitions

cf. Karasyuk et al., PRB     
49,16381 (1994)
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Experimental Details

• Samples

– 1 μm GaAs surrounded 
by doped and undoped
AlGaAs for flatbanding

– Concentrations of 3E14, 
1E15 and 3E15

– (Metal-insulator transition 
at 2 X 1016 cm-3 )

• Equipment
– Oxford 7 T magneto-

cryostat
– Spectra Physics ps Ti:Sa 

laser (Δν~1meV (0.5nm))
– Agilent 250kHz to 40GHz 

signal generator

X D0X
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Nuclear Spin Effects

1. Without nuclei, the Bloch equations describe the saturation of the 
ESR amplitude (A) with microwave power (P):

A = (αP) / (1 + βP)
2. With nuclei, Dynamic Nuclear Polarization arises from the 

Overhauser effect:  Saturated e-spins try to relax through the nuclear 
spins using the (I+ S− +  I− S+) part of the hyperfine interaction

3. Sign of the nuclear field: BN adds to the external field (Bext) 

a.  < I >  =  [ I (I + 1)/ S (S+1) ] ∗ [ < S > − < ST > ]  < 0
b.   BN = A < I > / ge β ; ge < 0; BN > 0 
c.   hν = gβ (Bext + BN)

4.  Enhancement and pinning  of the ESR can 
occur:
a.  Compare dBN/dt with dBext/dt
b.  DNP ∝ P
c.  Nuclear relaxation time ~ 1 minute
d. Strong effects occur for downward field 

sweeps Seck et al., 1997
Olshanetsky et al., Physica B 373, 182 (2006)
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Dependence on Microwave Power

817.8 nm (near res.), 9/20 &9/19 
data, 31F, T = 1.5 K, 35 GHz

• Unsaturated limit
– Down & up are the same

– Amplitude ∝ power

• DNP enhanced: dBN/dt ≈⎥ -dBext/dt⎥
– Strong for down sweeps
– Broadened & shifted
– Up sweeps unaffected

• ESR pinning: dBN/dt >⎥ -dBext/dt⎥
– Resonance not achieved

– BN becomes > 0.3 T

dBN/dt ∝ Saturuation ∝ P
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Dependence on Rate of Change of External Magnetic Field 

• 0 dbm, 9/17/05, 817.8 nm

• Dyanamics is again controlled 
by the relative size of dBN/dt
and -dBext/dt

• Rate of DNP induced BN is 
constant since microwave 
power ( P ) is constant.

• Decreasing the sweep rate of 
magnetic field (-dBext/dt) 
changes the response from 
DNP enhanced to ESR pinning.Magnetic Field (Telsa)
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Effects of the Probe Light

The experiment is a double 
resonance

– Microwave resonance in the 
ground state—tuned by 
changing the magnetic field

– Optical resonance to the 
excited state—tuned by 
changing the laser 
wavelength

D0

D0X Detuning
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Dependence on Wavelength of the Probe Light

• Optical Resonances for B = 6T
– D0X at 817.5 nm

– X at 816.25 nm

-6dbm, 34.694, 300 uW probe, 
9/20/05 data

• On resonance
– Large shift

– Extra line

• Detuned to lower E (longer λ)
– Sharp single line

– Decreasing amplitude
– Slow shift
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Peak Position versus probe wavelength and power

Position versus wavelength

• Approaches a limit off-
resonance

9/20/05 data—31F, light 
unfocussed

Position versus power
• Shifts to lower fields with 

increasing power
• DNP by slight depolarization of 

<S>  by the linearly polarized 
light
9/21/05 data, 820.5nm,-6dbm
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Dependence on Microwave Power for 3E15

• Different scaling
• Two lines
• Strong signals in 

quadrature
• DNP enhanced for 

high-field line at 
highest power

• Localized and de-
localized electrons

28G, 818.6nm, 8/9/05, no 
offset added



NRL Electronics March 2006

Dependence on wavelength of probe

• Black: in phase; Green: in 
quadrature

• In Phase
– 2 or 3 resonances
– phase changes

• In Quadrature
– one resonance
– reveals dynamics ~ 3 kHz

24 G, 3E15, 8/11/05, 
+6dbm,0.15 T/min
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g-factor and linewidth

Near resonance—817.8 nm

• g = 0.431; FWHM = 49 mT
• Real transitions

– D0X: holes
– X: electrons and holes

Off resonance—820.5 nm

• g = 0.428; FWHM = 10 mT
• Dispersive part of the index

Sweep rate 0.15 T/min
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Comparison of g-factors with other work

• Negative sign added

• 31F shown for near 
resonance & off-resonance
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T2* for donors in GaAs

• ~5 ns for low and high 
magnetic fields

• Limited by fluctuation in 
nuclear spin

• Good starting point for 
measuring T2
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Lifetimes for donors at high magnetic fields

g-broadening is small, possibly negligible

5.4 ns10ND-NA = 
3X1014 cm-3

This work

60 ps900Semi-
insulating

Trombetta & 
Kennedy
(1993)

100 ps--Semi-
insulating

Kikkawa & 
Awschalom

(1998)

1.1 ns50ND-NA = 
6.6X1014 cm-3

Seck et al. 
(1997)

2.3 ns--ND-NA = 
5X1013 cm-3

Kai-Mei Fu 
et al. (06)

T2*ΔB
FWHM (mT)

Sample
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Summary and Future Work

• Kerr rotation provides adequate sensitivity to work with 
isolated donors

• Nuclear effects
– Resonance without DNP enhancement –unpolarized nuclei
– DNP enhancement—good for finding ESR
– ESR-pinning—possibly good for polarizing nuclei

• Linewidth near or at the hyperfine limit—little or no g-
broadening

• Measuring T2 with electron-spin-echo in ensembles


