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• Inject spins from a ferromagnetic source
• Transport in the channel (minimize relaxation)
• Detection at drain contact
• Transimpedance depends on relative magnetizations of source

and drain 

“Ritual viewgraph” showing a spin-FET
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“Ritual viewgraph” showing a spin-FET

This has not yet been successfully implemented (no Hanle effect) 
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Spin-orbit interaction:
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• Control the orientation of the spins arriving at the drain (relative
to the magnetization of the drain contact)

• Transimpedance should depend on precession angle

• Inject spins from a ferromagnetic source
• Transport in the channel (minimize relaxation)
• Detection at drain contact
• Transimpedance depends on relative magnetizations of source

and drain 



IronIron

Hanle Effect for diffusive spin transport

• Application of a transverse field induces precession but also
dephasing due to a distribution of transport times (diffusion)

• Spin-dependent signal  should be suppressed in large fields
• This can usually be done in a geometry that leaves the magnetizations

of the electrodes fixed
• Metallic F-N-F systems have passed this test:

Johnson and Silsbee:  Phys. Rev. Lett. 55, 1790 (1985)
Jedema et al., Nature 416, 713 (2002)
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J. M. Kikkawa and D. D. Awschalom
Nature 397, 6715 (1999)

Things that work Part I:  Spin transport in GaAs

Doping: 1- 3 x 1016 cm-3

Spin drift lengths > 100 microns
Diffusion constant ~ 10 cm2/s
Spin lifetime:  100 nsec

This imposes no practical limitations.  2D systems are more difficult…..
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Things that work Part II:  Electrical spin injection

Graded doping profile:  A. T. Hanbicki et al., Appl. Phys. Lett. 82, 4092 (2003)
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Electrical spin injection:  PDI,NRL, IMEC, IBM, Minnesota
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• But:  EL polarization is used to detect the injected spins “at the source”
• This has limited the amount of physics done with these devices
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• Contact magnetization is unchanged by the applied field.
• Polar Kerr microscopy detects the z-component of the spin.

Hanle MOKE:  J. Stephens et al., Phys. Rev. Lett. 93, 097602 (2004).
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Measure Sz versus By : “Hanle curve”

By tips  Sx into or out-of-plane:

• These “Hanle curves”
contain all the physics
• Explicitly due to spin 
precession-5
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• Cloud of spins emitted from the source (lD ~ 30 microns)
• Polarization ~5% near the injection contact (not well-calibrated)
• Sign corresponds to injection of majority spins
• Sign reverses when the magnetization is reversed
• Spin accumulation is observed near the forward-biased drain contact;

as observed under MnAs/GaAs barriers:  Stephens et al., PRL 93, 
097602 (2004)

• The sign of the accumulated polarization is the same as the injected 
polarization
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• Account for diffusion, drift, and relaxation:

Drift-Diffusion Model

D = diffusion constant
vd = μE = drift velocity
τs = spin lifetime

Ω = Larmor frequency
w = width of contact
x = distance from edge of contact
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Drift-Diffusion Model

D = diffusion constant
vd = μE = drift velocity
τs = spin lifetime

Ω = Larmor frequency
w = width of contact
x = distance from edge of contact
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• Integrate over time (steady-state solution) and spatial 
extent of source
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Vary distance of probe beam from the source contact
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• There are four parameters (τs = 125 ns, D = 10 cm2/s, vD = 2.8 × 104 cm/s, 
and an amplitude S0),  which are the same for all curves.

• Near-field regime (dominated by diffusion, which sets width of Hanle
“envelope”)

• Drift  regime:               ;  precession during time-of-flight (oscillations)sDl τ>
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Far field:  precession during time-of-flight

At  x0 = 65 μm, Bpeak = 1.35 Gauss, T = π/2ΩL ~ 300 ns, or vd ~ 2.8×104 cm/s



• Near the drain:  diffusion is “fighting” drift → rapid attenuation
with distance

• One needs a relatively transmissive barrier (so that electric fields are 
small) in order to see the spin accumulation in the channel region

• Can we say any more about this?
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Y. Kato et al., Nature 47, 50 (2004) 

Observation of precession due to strain:

• Effective magnetic field depends on magnitude and direction of k.
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Stress along <110> directions:
Strain tensor has only two 
(identical) off-diagonal 
elements.  Effective field ϕ is 
always orthogonal to k.

Increasing strain

S. A. Crooker and D. L. Smith
Phys. Rev. Lett. 94, 236601 (2005)

Put the sample in a vise....

Optical Pumping



A means to measure momentum of the spin-polarized electrons:

e- flow

By = 0

[011]
εs> 0
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50 μm

• At opposite ends of the channel, the Hanle curves shift in opposite directions
with increasing strain.  The (diffusive) spin current at the drain is flowing against 
the charge current. See also M. Hruska et al., Phys. Rev. B 73, 075306 (2006).
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Why the bizarre shape?

Diffusion in 1D leads
to inhomogeneous
broadening for “real 
fields,” but not for the k-
dependent “effective 
fields.”
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What is going on at the drain?

1.  The spin accumulation is due to reflection from the 
ferromagnetic drain contact, as observed in MnAs/GaAs
by Stephens et al.

2.  The devices under study here have more transparent 
tunnel barriers. It is much easier for electrons to diffuse 
“backwards” against the drift current, which is why spin 
polarization can be observed in the channel.  

3.  This is (apparently) not filtering by the tunnel barrier, at
least in the sense predicted by the average density of 
states, which gives the wrong sign.  Energy-selective or 
k-selective spin filtering may be a possibility.  See 
arguments of  Ciuti, McGuire, and Sham.

4.  The mechanism is relatively efficient.  The spin 
polarization at the drain is of the same order of magnitude 
as at the source.
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• The above data imply that the conductance of the 
minority spin channel at the drain should be higher than
the conductance of the majority channel.

• Can we verify this explicitly?
Inject spins of a known sign optically and measure the conductance:

Electrical spin detection*
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• Conductance is higher for the minority channel, consistent with the sign
of the spin accumulation.
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Summary

1.  It is possible to study separately each “element” of a spin 
transport device: source, channel, and drain.

2.  A definitive demonstration of a ferromagnetic-
semiconductor device that functions as both a source and 
detector of spin-polarized electrons (passes the “Hanle test”).

3.  This has given us a very good idea of what to look for in 
a “real” transport experiment, without the assistance of
photons.  We know that there is spin accumulation at
the drain, even in the absence of a spin-polarized source.

4.  We know what to look for in the magnetic field
dependence (also temperature dependence and doping 
dependence, which I have not discussed here).

S. A. Crooker et al., Science 309, 2191 (2005).



Transport

Sample grown using MBE

Al

n:GaAs (2500 nm)

n→n+:GaAs

Semi-insulating
GaAs substrate

(30 nm)

(2.5 nm)
Fe (5 nm)

• Applied magnetic field is small,  ~100 Oe
Fe magnetization is fixed.

• Channel length >> spin drift and diffusion length
Graded doping structure:
A. T. Hanbicki et al., Appl. Phys. Lett. 82, 4092 (2003).

• Samples studied:
2 x 1016/cm3 ≤ n ≤ 3 x 1017/cm3

• Al control sample:
replace Fe with Al

• GaAs channel: 
150x100 μm

• Fe contact: 
40x100 μm
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• Zero field voltage peak at the drain.
• No peak in the source and channel voltage 
measurements.
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Source/Drain Asymmetry

• Voltage peak and source/drain asymmetry observed on samples:
2 x 1016/cm3 ≤ n ≤ 1.5 x 1017/cm3

• This appears to be a generic feature of this barrier profile
• No peak observed on the Al control sample
• Contact magnetization has remained fixed 
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Spin accumulation: experiment and theory
[1] R. K. Kawakami, et al., Science 294, 131 (2001)
[2] C. Ciuti, et al., Phys. Rev. Lett. 89, 156601 (2002).
[3] J. Stephens et al., Phys. Rev. Lett. 93, 097602 (2004).
[4] S. Crooker et al., Science 309, 2191 (2005)

Drain voltage is polarization-dependent            
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Modeling parameters:
D = spin diffusion constant:    determined from transport           
vd = spin drift velocity:             determined from transport
τs = spin relaxation time:        determined from optical Hanle effect
Leff = 15 μm < LFe = 40 μm:      fixed parameter
S0 = spin generation rate:       unknown, free parameter

Modeling: spin drift-diffusion model
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Detection of Spin Accumulation at the Drain

Optical detection of spin
injection from the source,
modeled with the same 
parameters (except for 
the amplitude)

Electrical detection;
curves are fits with the
drift-diffusion model
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Doping Dependence

• Increase of half-width with doping is expected (decrease of spin 
lifetime)

• Sharp peak at zero field due to hyperfine effects
- Observed at high bias at intermediate dopings
- All biases at low (~ 2 x 1016 cm-3) dopings (?)



Summary (Part II)

• The spin accumulation at the drain can be detected in a 
Hanle-style experiment.

• Consistency with optical measurements strongly supports
the interpretation of the transport measurements.

• The signal is not sensitive to the sign of the polarization.  

• The obvious next step is a non-local measurement (in 
progress – with some success)

• The source-drain measurement is more problematic.   In this
respect, the effect demonstrated here is a nuisance, and a 
non-local measurement appears to be essential.    

X. Lou et al., Phys. Rev. Lett. 96 176603 (2006)


