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• General physical interest to this problem (R. Feynman, 1983)

• Shor’s algorithm for large number factorization (1994)

The major difference from a computer is replacement of a bit (“on” or “off” states) 
by a qubit ( a coherent superposition of “on” and “off” states)

Electron Spin Manipulation for Quantum Computer

A single electron spin in a QD is a natural qubit [Loss and DiVincenzo, PRA(1998)]
Universal quantum computation requires:
• Arbitrary 1-qubit rotations (single spin rotation)

• Performed by turning on local magnetic field

• Fast operations in order to keep a coherent superposition

Coulomb repulsion U in each dot. Tunneling T(t) between 
the dots. Effective coupling J(t) ~ T2(t)/U. Tunneling T(t)
controlled by varying gate voltage.T(t)

• A single 2-qubit gate operation (spin-spin interaction)
• spin-spin exchange interaction controlled  by gates



Optical Manipulation of Electron Spin
Initialization

One qubit operation

Entanglement of 2 qubits

Read-out

Critical Steps for 
Implementation of a 
Solid State Based 
Quantum Computer

Optical methods provide high speed techniques of spin control and 
manipulation and allow to access an electron spin locally.

• Non-resonant optical pumping of an electron spin in negatively charged   
quantum dots [Phys. Rev. Lett. 94, 047402 (2005)]

•Optical initialization of electron spins by resonant π-pulses of σ± -polarized 
light  [Phys. Rev. B 68, 201305(R) (2003)]

•Optical control of spin coherence in charged QDs [condmat/0603020]



Optical excitations in singly charged QD

The ground electron and hole states 
are |±1/2> and |±3/2>, respectively.
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Single Charge-Tunable QD Spectroscopy
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Photoluminescence Polarization Memory Effect
(initial expectations)
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PL Polarization Memory Effect: Experiment
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Negative PL Polarization Degree of X- in QD 
Why is X- polarization degree negative, why does it grow 
with pumping intensity and changes sign with bias?

Negative polarization was observed in ensembles of charged 
QDs:

Dzhioev et al. Phys. Solid State 40, 1587 (1998)
Cortez et al. Phys Rev. Lett. 89, 207401 (2002)

Kalevich et al. phys. stat. sol. “b” 238, 250 (2003)

Spectroscopy of a single charge QD [Bracker et al. Phys. Rev. Lett. 94, 047402 
(2005)] allows us to suggest a model that 

1. Describes unusual PL polarization properties of charged quantum dots.

2. Explains mechanism responsible for optical pumping of electron spins



Mechanism for X- polarization

X- polarization:
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Steady State Solution
If the hole spin relaxation time τH is very long the steady state 
concentrations of Bright, b↓⇑, and Dark, d↓⇓, excitons is determined: 

where             is the rate 
of exciton capture on 
charged quantum dots

The concentrations of spin ↑ and spin ↓ electrons (n↑ and n↓ ) 
depends on the pumping intensity. At low intensity:

where           is the electron spin relaxation time
SEdGnn τ⇓↓↑ −=
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X- polarization: bias dependence

few manyElectrons in QW:
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Erase Electron Spin Polarization
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Hanle effect
Bx = 0.5 T
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Hanle effect: electron spin lifetimes
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• Depolarize electrons but not holes    
with magnetic field in the QD plane

• Smaller depolarization field implies
longer electron spin lifetime
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Summary

– Optical orientation is observed in a single, charge-tunable QD.

– Theory explains the negative optical polarization in negatively charged 
QDs resulting from the electron spin pumping, which leads to accumulation 
of dark excitons.

– Theory quantitatively describes amplitude and sign of Hanle effect, as well 
as the polarization power dependence in negatively charged QDs.

– However the non-resonant optical pumping is not the best way of the 
electron spin initialization. 



(Brossel and Kastler, Comp. Rend. 229, 1213 (1949).)

Selection rules allow luminescence in both spin 
states. It leads to accumulation of Sz = -1/2.
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Resonant Optical Spin Orientation: 
Atoms vs. QD’s
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Luminescence returns electron to the same 
initial spin state. Optical initialization is not 
possible!!
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Electron spin can change due to either electron or hole spin relaxation.
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precession of electron spin in effective hyperfine B-field of nuclei 
1/ΩN 1-10 ns

Net electron spin of trion = 0
Hole is not affected by nuclei.

Two-phonon process flips the spin of hole.
It requires phonons: 1/τs

h → 0 at low temperature.
T. Takagahara Phys. Rev. B 62, 16840 (2000).

Spin flip transitions

fluctuation of nuclear spin directions in a finite size QD
I.A. Merkulov, Al. L. Efros, and M. Rosen Phys. Rev. B 65, 205309 (2002).
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Effect of σ+ Polarized Optical π- Pulses
The intense (+) polarized light drives the +1/2 electron into the +3/2
trion states and back with Rabi frequency: Ω R = 2 (E·d/ )
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Effect of π- pulses of optical and magnetic  field

z Bx

Transverse magnetic field rotates electron spin: Ωs = BgeBx/ 

Bx(t)

Δt = π / Ωs
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Δt = π / Ωs
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If an electron is 
unpolarized Sz= 0 optical 

-pulse of (+) polarization
creates a coherent 
superposition  of the +3/2  
trion and the optically 
passive Sz= -1/2 electron.

Sz= 0 50% 50%
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Initialization by optical and magnetic -pulses

Problem: It is difficult to generate short magnetic pulses ( τr >> Δt ) .

Short magnetic -pulse flips the electron spin but it does not affect the trion.

100% electron spin polarization can be achieved!
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Summary

•Electron spin in QDs can be optically initialized by intense 
polarized light.

•We propose optical initialization of an electron spin that 
using a combination of optical and transverse magnetic 
field π-pulses.



Controlled Initialization of Spin Coherence in 
Ensemble of Singly charged QDs
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Pump-probe Faraday and Kerr rotation measurements*

“Semiconductor Spintronics and Qauntum Computation” Eds. D.Awschalom, 
D. Loss…(2002), J.  Kikkawa & D. Awschalom, Science 287, 473 (2000),  J. 
Gupta & D. Awschalom PRB  59, 10421 (1999)….
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Samples: 20 layers 
of QDs separated by 
60 nm wide barriers, 

QD density ~ 1010 

cm-2, n -modulation 
doped 20nm below 
each layer with the 
same Si density. 



Pump-Probe Faraday Rotation in (In,Ga)As/GaAs QDs
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Long-Lived Electron Spin Coherent State
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observed in GaAs/AlGaAs interface QDs:
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Theory of this effect: S. E. Economou et 
al., Phys. Rev. B 71, 195327 (2005)



Pump Power Dependence of FR Amplitude
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Coherent Spin Superposition

coherent spin state electron/trion coherent superposition
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A short pulse of resonant circularly polarized light  with external transverse magnetic field 
creates a CS  of the electron and trion states. If pulse length Δt << τr, τs

h, and  τs
e :

spin vector: Sx = Re(α β* ) , Sy = -Im(α β* ), Sz = (|α|2- |β |2 )/2

z

y
x

S Arbitrary spin orientation: |ψ =α| +β | , where |α|2+|β
|2=1 in the ground state, and  |α|2+|β |2 <1 in the excited state. 

Spin polarization vector



Optical Control of Electron Spin

σ+ polarized pulse 
decreases Sz:

|Sz-S0
z|=0.5|α 0|2sin2(Θ/2)  

and it reaches maximum at 
Θ=(2n +1)π

Sx and Sy component
change sign with 
period 2π, Θ=2nπ-
pulses can be used



Spin Dynamics After Pulse
After the pulse the electron and trion spin vectors in a single QD:

The long lived electron spin polarization at  t >> τr :Sz(t) = Sz∝ cos[(Ωe+ ΩN,x) t],

Jx=Re(α tr β *
tr) , Jy=-Im(α tr β *

tr) ,
Jz=-(1/2)(|α tr |2- |β tr |2 ) .

Trion spin vector: J = (Jx ,Jy ,Jz),
describes polarization of  the trion
state:   |ψtr =αtr| +βtr
|

time

ground state 
electron

time

excited state 
trion

If Ωe >> 1/τr, Sz∝ =Sz(0) is the electron polarization created by the pulse ONLY



Faraday Rotation Amplitude in a QD Ensemble

In a QD ensemble J(t) and S(t) should be averaged over Δ ge=0.004

Optically induced FR amplitude:

Proportional to the population difference of states involved in σ+ and σ-

transitions:   Δn+=n↓-n⇑ and Δn-=n↑-n⇓ . The FR angle:

.)()(2/)(~)( tJtSnnt zz −=Δ−Δ ++φ

Theoretical time dependence 
of FR signal for ensemble of 
QDs, which use parameters 
from experiment.



Summary

1. We have shown experimentally and theoretically that short 
pulses of circularly polarized  light with transverse magnetic 
field allow initialization a complete control of electron spin 
coherence in a single quantum dot.

2. For resonant excitation, the pulse area uniquely  determines 
the electron spin coherence.

• The spontaneous decay of the trion does not affect the spin 
coherence at Ωeτr >> 1.
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