# Materials physics in ferromagnetic semiconductors and AMR effects in GaMnAs nanostructures



Institute of Physics ASCR

Tomáš Jungwirth



University of Nottingham

František Máca, Jan Mašek, Jan Kučera Josef Kudrnovský, Alexander Shick Karel Výborný, Jan Zemen, Vít Novák, Miroslav Cukr, Kamil Olejník, et al. Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth, Devin Giddings et al.

#### in collaboration with

| Hitachi Cambridge | UT & Texas A&M               | Würzburg            | SNS Pisa     |
|-------------------|------------------------------|---------------------|--------------|
| Jorg Wunderlich   | Allan MacDonald,Jairo Sinova | Laurens Molenkamp,  | Marco Polini |
| David Williams    | Quian Niu                    | Charles Gold et al. |              |

# 1. Introduction (Ga,Mn)As material

intrinsic and extrinsic properties

# 2. Other related diluted magnetic semiconductors

search for higher Curie temperature and p- and n-type FS

# 3. AMR effects in (Ga,Mn)As

spin-valves and SETs

# 1. Introduction - (Ga,Mn)As material



| GALLI | UМ                  | 69.72          | MANG | ANESE                 | 54.938          |
|-------|---------------------|----------------|------|-----------------------|-----------------|
| 5.91  | Ga                  | 31             | 7.43 | Mn                    | 25              |
| [Ar]  | 3d <sup>10</sup> 4s | 2 <b>3</b> p1  | 4]   | .r] 3d <sup>5</sup> 4 | 1s <sup>2</sup> |
| 4.51  | ORC                 | 1.695<br>1.001 | 8.89 | CUB                   |                 |
| 303   |                     | 240            | 1518 |                       | 400             |

5 *d*-electrons with L=0  $\rightarrow$  S=5/2 local moment

moderately shallow acceptor (110 meV)  $\rightarrow$  hole

(near-neghbors cople AF)

- Mn local moments too dilute

- Holes don't polarize in pure GaAs
- Hole mediated Mn-Mn FM coupling



Jungwirth, Sinova, Mašek, Kučera, MacDonald, Rev. Mod. Phys. (2006), http://unix12.fzu.cz/ms



- $T_c$  linear in  $Mn_{Ga}$  local moment concentration
- Falls rapidly with decreasing hole density in more than 50% compensated samples
- Nearly independent of hole density for compensation < 50%.

**Extrinsic effects** - covalent SC do not like doping  $\rightarrow$  self-compensation by interstitial Mn

## Interstitial Mn<sub>1</sub> is detrimental to magnetic order:

- compensating double-donor reduces carrier density
- attracted to substitutional Mn<sub>Ga</sub> acceptor and couples antiferromagnetically to Mn<sub>Ga</sub> even at low compensation

Yu et al., PRB '02; Blinowski PRB '03; Mašek, Máca PRB '03





## Generation of Mn<sub>I</sub> during growth

Theoretical linear dependence of Mn<sub>Ga</sub> on total Mn confirmed experimentally



## $T_{\rm c}$ in as-grown and annealed samples



## Linear increase of T<sub>c</sub> with effective Mn moment doping



 $T_c$  increases with  $Mn_{eff}$  when compensation is less than ~40%.

No saturation of  $T_c$  at high Mn concentrations

Universal scaling of T<sub>c</sub> per Mn<sub>eff</sub> vs. hole per Mn<sub>eff</sub>



No signs of approaching an intrinsic T<sub>c</sub> limit in current (Ga,Mn)As materials yet

## **Prospects for higher T<sub>c</sub> in (Ga,Mn)As**

- Effective concentration of uncompensated  $Mn_{Ga}$  moments has to increase beyond 6.2% of the current record T<sub>c</sub>=173K sample
- Charge compensation not so important unless > 40%
- Technology (precise control of growth-T, stoichiometry) is expected to move  $T_{\rm c}$  above 200K
- $T_{\rm c}$  above 400 K needed for widespread applications





# 2. Other related diluted magnetic semiconductors

## The central tension in dilute moment systems

- Keep the number of moments (local and band-electrons) large for large  $\rm T_{\rm c}$ 

- Keep the number of moments low to retain semiconductor characteristics

## The central question in dilute magnetic semiconductors materials

- Where to find the factor of  $\sim 2 T_c$  enhancement?

How far can we go (physics and technology wise) with doping and local-carrier moment coupling strength while still increasing  $T_c$ ?

Which semiconductor host is optimal?

## Magnetism in systems with coupled dilute moments and delocalized band electrons



## (III,Mn)V materials: Microscopic picture of Mn-hole coupling in (Ga,Mn)As





**Delocalized holes** long-range coupl.

![](_page_13_Picture_2.jpeg)

**d**<sup>5</sup>

Impurity-band holes short-range coupl.

![](_page_13_Picture_5.jpeg)

Scarpulla, et al. PRL (2005)

![](_page_13_Picture_7.jpeg)

#### Mixed (AI,Ga)As and Ga(As,P) hosts

![](_page_14_Figure_1.jpeg)

Mean-field Curie temperature:

$$T_c \propto J_{pd}^2 x / \Omega_{u.c.} = a_{lc}^{-11} (1/|E_{d\uparrow}| + 1/|E_{d\downarrow}|)^2$$
  
50% in GaP 4% in GaP and AlAs

p-d coupling and T<sub>c</sub> in mixed (AI,Ga)As and Ga(As,P)

Smaller lattice const. more important for enhancing *p*-*d* coupling than larger gap  $\downarrow$ Mixing P in GaAs more favorable for increasing mean-field T<sub>c</sub> than Al

No dramatic decrease in the LDA+U range of Mn-Mn interactions

Mašek, et al. to be published Microscopic TBA/CPA or LDA+U/CPA

![](_page_15_Figure_4.jpeg)

![](_page_15_Figure_5.jpeg)

## Mn formation energies in mixed Ga(As,P)

![](_page_16_Figure_1.jpeg)

III-V [(Ga,AI)(As,P)] based ferromagnetic semiconductors:

- adding few % of one type of dopand (Mn) in a common semiconductor but the simplicity brings limitations

Mn solubility limits; correlated local-moment and carrier densities;
p-type only

![](_page_17_Figure_0.jpeg)

## III = I + II $\rightarrow$ Ga = Li + Zn

## GaAs and LiZnAs are twin SC

- Band gaps 1.5 eV vs. 1.6 eV
- similar band dispersions
- similar GS charge densities
- similar phonon dispersions, ...

![](_page_17_Figure_7.jpeg)

Wei, Zunger '86; Bacewicz, Ciszek '88; Kuriyama, et al. '87,'94; Wood, Strohmayer '05

![](_page_17_Figure_9.jpeg)

Kudrnovský, et al. to be published

# No solubility limit for Mn<sub>Zn</sub>

Solubility of Mn in Li(Mn,Zn)As

### Large electron densities in non-stoichiometric n-type Li(Zn,Mn)As

![](_page_18_Figure_1.jpeg)

Total concentration of excess Li

Total concentration of excess Li

## Mean-field T<sub>c</sub>

![](_page_19_Figure_1.jpeg)

Li(Mn,Zn)As: similar to (Ga,Mn)As but lifts all the limitations of Mn solubility; correlated local-moment and carrier densities; p-type only

3. AMR (anisotropic magnetoresistance) effects in (Ga,Mn)As

Ferromagnetism: sensitivity to magnetic field

SO-coupling: transport coefficients depend on angle between magnetization and current (crystal axes)

Switch

![](_page_20_Figure_3.jpeg)

Battery

Switch

Band structure depends on *M* 

# **Tunneling AMR: anisotropic tunneling DOS due to SO-coupling**

![](_page_21_Figure_1.jpeg)

## Wavevector dependent tunnelling probability $T(k_y, k_z)$ in GaMnAs Red high T; blue low T.

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_0.jpeg)

cond-mat/0602298 Fe, Co break junctions TAMR >TMR

# **Coulomb blockade AMR**

Conductance  $[\mu\Omega^{-1}]$ 

**Spintronic transistor -** magnetoresistance controlled by gate voltage *Single-electron FET* 

Narrow channel SET dots due to disorder potential fluctuations

Huge hysteretic low-field MR

Sign & magnitude tunable by small gate valtages

spin-coherent (resonant) tunneling unlikely origin

![](_page_24_Figure_6.jpeg)

CB oscillations low  $V_{sd} \rightarrow blocked$ due to SE charging

Strong dependence on field angle →hints to AMR origin

> Wunderlich, Jungwirth, Kaestner et al., cond-mat/0602608

## AMR nature of the effect

![](_page_25_Figure_1.jpeg)

## **CB** oscillation shifts by magnetication rotations

![](_page_26_Figure_1.jpeg)

## **Microscopic origin**

![](_page_27_Figure_1.jpeg)

## Spin-orbit coupling $\rightarrow$

chemical potential depends on M

If lead and dot different (different carrier concentrations in our (Ga,Mn)As SET)

$$U = \int_{0}^{Q} dQ' V_{D}(Q') + \frac{Q \Delta \mu(\vec{M})}{e} \& \Delta \mu(\vec{M}) = \mu_{L}(\vec{M}) - \mu_{D}(\vec{M})$$

![](_page_28_Figure_4.jpeg)

![](_page_28_Figure_5.jpeg)

![](_page_29_Figure_0.jpeg)

• CBAMR if change of  $|\Delta \mu(\mathbf{M})| \sim e^2/2C_{\Sigma}$ 

occurs when anisotropy of bandstructure derived parameter comparable to independent energy scale (singleelectron charging)  $\rightarrow$  distinct from all other AMRs

In (Ga,Mn)As ~ meV (~ 10 Kelvin)

• In room-T ferromagnet change of  $|\Delta \mu(\mathbf{M})| \sim 100 \text{K}$ 

![](_page_30_Figure_0.jpeg)

![](_page_30_Figure_1.jpeg)

 n-type or p-type FET characteristic switched by magnetization rotation

![](_page_30_Figure_3.jpeg)

![](_page_30_Figure_4.jpeg)