Teleportation of electronic manyqubit states via single photons

Michael N. Leuenberger (*) and Michael E. Flatté University of Iowa

> David D. Awschalom University of California, Santa Barbara

Phys. Rev. Lett. 94, 107401 (2005)

Supported by DARPA/ARO, DARPA/ONR, and US NSF

(*) NanoScience Technology Center and Dept. of Physics, University of Central Florida, email: mleuenbe@mail.ucf.edu, homepage: www.nanoscience.ucf.edu

Teleportation of single photon states via EPR pair

Theory: Bennett et al., PRL 70, 1895 (1993)

Experiment:

Bouwmeester et al., Nature **390**, 575 (1997)

Initial state: $|\psi_1\rangle = \alpha |\leftrightarrow_1\rangle + \beta |\uparrow_1\rangle$ Bell states: $|\Psi_{23}^{(\pm)}\rangle = (|\leftrightarrow\uparrow\rangle\pm|\uparrow\leftrightarrow\rangle$

$$|\Psi_{23}^{(\pm)}\rangle = (|\leftrightarrow \uparrow\rangle \pm |\uparrow \downarrow \downarrow\rangle)/\sqrt{2}$$
$$|\Phi_{23}^{(\pm)}\rangle = (|\leftrightarrow \leftrightarrow\rangle \pm |\uparrow \downarrow \downarrow\rangle)/\sqrt{2}$$

Shared EPR state: $|\Psi_{23}^{(-)}\rangle = (|\leftrightarrow \uparrow\rangle - |\uparrow\leftrightarrow\rangle)/\sqrt{2}$

Teleportation by means of Bell measurement (correlation) of photon 1 and 2.

3-photon state:
$$|\Psi_{123}\rangle = |\psi_1\rangle |\Psi_{23}^{(-)}\rangle$$

 $|\Psi_{123}\rangle = \frac{1}{2} \Big[|\Psi_{12}^{(-)}\rangle (-\alpha |\leftrightarrow_3\rangle - \beta |\updownarrow_3\rangle) + |\Psi_{12}^{(+)}\rangle (-\alpha |\leftrightarrow_3\rangle + \beta |\updownarrow_3\rangle + |\Phi_{12}^{(-)}\rangle (\beta |\leftrightarrow_3\rangle + \alpha |\updownarrow_3\rangle) + |\Phi_{12}^{(+)}\rangle (-\beta |\leftrightarrow_3\rangle + \alpha |\updownarrow_3\rangle) \Big]$

Quantum teleportation across the river Danube

Ursin et al., Nature **430**, 849 (2004)

The quantum channel (optical fiber F) rests in a sewage-pipe tunnel below the Danube in Vienna with a total length of 800 m. Fidelity>80%.

Teleportation of electronic many-qubit states via single photons

Greenberger-Horne-Zeilinger states (GHZ)

 $|\Psi_{\rm GHZ}\rangle = \left(|\uparrow\uparrow\uparrow\rangle + e^{i\varphi}|\downarrow\downarrow\downarrow\rangle\right)/\sqrt{2}$

Preparation of GHZ states by means of interaction

Quantum dots

Classical Faraday effect (circular dichroism, circular birefringence)

(1)

Faraday rotation angle: $\beta = \nu B d$

Verdet constant is proportional to the difference in index of refraction for right (σ^+) and left (σ^-) circularly polarized light, which is proportional to the magnetization of the material:

 $\nu \propto \eta_{\sigma^+} - \eta_{\sigma^-} \propto M$

Horizontal linear polarization (\leftrightarrow): $\mathbf{e} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

Vertical linear polarization (\updownarrow): $\mathbf{e} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

Right circular polarization (
$$\sigma^+$$
): $\mathbf{e} = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}$

Left circular polarization (σ^{-}): $\mathbf{e} = \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}$

Optical selection rules ⇒ single-photon Faraday rotation ⇒ entanglement of photon and spin

Spherical dots \Rightarrow 50% selection rules for nonresonant interaction

 Phase shift of photon for virtual process involving heavy holes is 3 times larger than for virtual process involving light holes

- \Rightarrow net Faraday rotation of polarization of photon
- Phase shift depends on spin state \Rightarrow entanglement of photon with spin

Optical selection rules ⇒ single-photon Faraday rotation

Leuenberger, Flatte, Awschalom, Phys. Rev. Lett. 94, 107401 (2005)

Non-spherical dots (strong anisotropy splits heavy and light holes)

 \Rightarrow 100% selection rules for nonresonant interaction \Rightarrow accelerated Faraday rotation

- Phase shift of photon for virtual process depends on spin state
- \Rightarrow Faraday rotation of linear polarization of photon
- Direction of Faraday rotation depends on spin state \Rightarrow entanglement of photon with spin

Single-qubit teleportation

Spin state of excess electron in quantum dot of destination: $|\psi_{e'}^{(1)}\rangle = |\langle -\rangle = \frac{1}{\sqrt{2}} (|\uparrow'\rangle + |\downarrow'\rangle)$ Incoming photon is linearly polarized in, e.g. x direction: $|\psi_{pe'}^{(1)}(t_A)\rangle = |\langle +\rangle|\langle -\rangle$ After interaction of photon with quantum dot: $|\psi_{pe'}^{(1)}(t_A + T)\rangle = e^{iS_0^{hh}} |\psi_{hh}^{(1)}\rangle + e^{iS_0^{hh}} |\psi_{hh}^{(1)}\rangle$ Process involving heavy/light hole: $|\psi_{hh}^{(1)}\rangle = (|\sigma_{(z)}^+\rangle|\uparrow'\rangle + |\sigma_{(z)}^-\rangle|\downarrow'\rangle)/2$ $|\psi_{hh}^{(1)}\rangle = (|\sigma_{(z)}^-\rangle|\uparrow'\rangle + |\sigma_{(z)}^+\rangle|\downarrow'\rangle)/2$

Conditional phase shift for maximum entanglement: $S_0 = S_0^{hh} - S_0^{lh} = \pi / 2$

The photon is now sent to origin D. Photon at D and spin at D' are in a Bell state (EPR pair):

$$\left|\psi_{\mathrm{pe}'}^{(1)}(t_{A}+T)\right\rangle = \left(\left|\longleftrightarrow\right\rangle\left|\uparrow'\right\rangle + \left|\longleftrightarrow\right\rangle\left|\downarrow'\right\rangle\right)/\sqrt{2}$$

(similar to distribution of EPR pair produced by e.g. parametric down-conversion in traditional EPR teleportation)

Preparation of spin at D: $|\psi_{e}^{(1)}\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle$

When teleporting a qubit from D to D' is desired, photon at D interacts with spin at D:

$$\left|\psi_{\rm epe'}^{(1)}(t_{\rm C})\right\rangle = \left(\alpha\left|\uparrow\right\rangle\left|\swarrow\right\rangle\left|\uparrow\right\rangle + \alpha\left|\uparrow\right\rangle\left|\swarrow\right\rangle\left|\downarrow\right\rangle\right\rangle + \beta\left|\downarrow\right\rangle\left|\uparrow\right\rangle + \beta\left|\downarrow\right\rangle\left|\swarrow\right\rangle\left|\downarrow\right\rangle\right\rangle / \sqrt{2}$$

 \Rightarrow Formation of GHZ state of spin at D, photon, and spin at D'

Collapse of the GHZ state

Traditional teleportation:- No interaction of spin at D and photonTheory: Bennett et al., PRL 70, 1895 (1993)- Bell measurement of spin at D and photonExperiment: Bouwmeester et al., Nature 390, 575 (1997)

Teleportation scheme here: Single-particle measurement of spin at D and photon collapse of GHZ state

$$\begin{split} \left|\psi_{\text{epe}'}^{(1)}(t_{C}+T)\right\rangle &= \left[\left|\updownarrow\right\rangle\left(-\alpha\left|\uparrow\right\rangle\right|\uparrow'\right\rangle + \beta\left|\downarrow\right\rangle\right|\downarrow'\right\rangle\right) + \left|\leftrightarrow\right\rangle\left(\alpha\left|\uparrow\right\rangle\right|\downarrow'\right\rangle + \beta\left|\downarrow\right\rangle\right)\right]/\sqrt{2} \\ &= \left\{\left|\updownarrow\right\rangle\left[\left|\leftrightarrow\right\rangle\left(-\alpha\left|\uparrow'\right\rangle + \beta\left|\downarrow'\right\rangle\right) + \left|\rightarrow\right\rangle\left(-\alpha\left|\uparrow'\right\rangle - \beta\left|\downarrow'\right\rangle\right)\right]\right\} \\ &+ \left|\leftrightarrow\right\rangle\left[\left|\leftarrow\right\rangle\left(\beta\left|\uparrow'\right\rangle + \alpha\left|\downarrow'\right\rangle\right) + \left|\rightarrow\right\rangle\left(\beta\left|\uparrow'\right\rangle - \alpha\left|\downarrow'\right\rangle\right)\right]\right\}/\sqrt{2} \end{split}$$

Measurement of linear polarization of photon:

 $|\psi_{ee'1}^{(1)}(t_D)\rangle = -\alpha |\uparrow\rangle |\uparrow'\rangle + \beta |\downarrow\rangle |\downarrow'\rangle \qquad \text{or} \qquad |\psi_{ee'2}^{(1)}(t_D)\rangle = \alpha |\uparrow\rangle |\downarrow'\rangle + \beta |\downarrow\rangle |\uparrow'\rangle$ Single-spin detection of D in x direction (possible with a single photon) \Rightarrow

$$\left|\psi_{e'1}^{(1)}(t_D)\right\rangle = -\alpha \left|\uparrow'\right\rangle + \beta \left|\downarrow'\right\rangle$$
 or $\left|\psi_{e'3}^{(1)}(t_D)\right\rangle = \beta \left|\uparrow'\right\rangle + \alpha \left|\downarrow'\right\rangle$

or $\left|\psi_{e'2}^{(1)}(t_D)\right\rangle = -\alpha \left|\uparrow'\right\rangle - \beta \left|\downarrow'\right\rangle$ or $\left|\psi_{e'4}^{(1)}(t_D)\right\rangle = \beta \left|\uparrow'\right\rangle - \alpha \left|\downarrow'\right\rangle$

Knowledge of detection outcome \Rightarrow teleportation from D to D' complete

Nonperturbative calculation of the singlephoton Faraday rotation

Full Hamiltonian: $H = H_L + V$ Luttinger-Kohn Hamiltonian for spherical dots: $H_L = (\gamma_1 + \frac{5}{2}\gamma)\frac{p^2}{2m_0} - \frac{\gamma}{m_0}(\mathbf{pJ})^2$ Interaction Hamiltonian: $V = \frac{e}{2mc}\mathbf{A}\cdot\mathbf{p}$ Vector potential of electromagnetic field of photon: $\mathbf{A}(t) = \tilde{A}(t) \sum_{\sigma} \mathbf{\epsilon}_{a\sigma} \left(a_{a\sigma} e^{-i\omega t} - a_{a\sigma}^{\dagger} e^{+i\omega t} \right)$ $V_{hh} = \langle I; 0 | V | g; i \rangle = \frac{e}{mc} A_0 p_{cv} = \sqrt{3} V_{hh} = 50 \ \mu eV$ Full Hamiltonian in rotating frame: $H = \begin{pmatrix} E_0 & V_{hh} & 0 & 0 \\ V_{hh} & E_0 + \hbar \omega_d & 0 & 0 \\ 0 & 0 & E_0 & V_{hh} \\ 0 & 0 & V_{hh} & E_0 + \hbar \omega_d \end{pmatrix}$ $E_{gap} = \hbar (\omega + \omega_d)$ $= 1.4 \ eV$ Basis states: $|\uparrow\rangle|\sigma_{(z)}^{+}\rangle$; $|\uparrow$, hh-exciton \rangle ; $|\uparrow\rangle|\sigma_{(z)}^{-}\rangle$; $|\uparrow$, lh-exciton \rangle Initial state: $|\psi(t_A)\rangle = |\uparrow\rangle|\leftrightarrow\rangle = (|\uparrow\rangle|\sigma_{(z)}^+\rangle + |\uparrow\rangle|\sigma_{(z)}^-\rangle)/\sqrt{2}$ $V_{\rm lh}/\hbar\omega_{\rm d} \ll 1 \Rightarrow |\uparrow\rangle |\sigma_{(z)}^+\rangle$ and $|\uparrow\rangle |\sigma_{(z)}^-\rangle$ remain fully populated. After interaction time T: $|\psi(t_A + T)\rangle = e^{-\frac{i}{\hbar}E_0T} \left[e^{-i\Omega_{hh}T} \left| \uparrow \right\rangle \left| \sigma_{(z)}^+ \right\rangle + e^{-i\Omega_{hh}T} \left| \uparrow \right\rangle \left| \sigma_{(z)}^- \right\rangle \right] / \sqrt{2}$ Interaction frequencies: $\Omega_{\rm hh} = \frac{V_{\rm hh}^2}{\hbar^2 \omega_{\rm h}} = \frac{3V_{\rm lh}^2}{\hbar^2 \omega_{\rm h}} \qquad \Omega_{\rm lh} = \frac{V_{\rm lh}^2}{\hbar^2 \omega_{\rm h}} \qquad T = 1 \, \rm ns$ $S_0^{\text{lh}} = \Omega_{\text{lh}}T \implies$ Faraday rotation! \Rightarrow phase shifts are different: $S_0^{hh} = \Omega_{hh}T$

Single-photon Faraday rotation

Incoming photon is linearly polarized in, e.g. x direction: $|\psi_{ep}^{(1)}(t_A)\rangle = (\alpha |\uparrow\rangle + \beta |\downarrow\rangle)|\leftrightarrow\rangle$ Spin state of excess electron in quantum dot of origin: $|\psi_{e}^{(1)}\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle$ After interaction of photon with quantum dot: $|\psi_{ep}^{(1)}(t_A + T)\rangle = e^{iS_0^{hh}} |\psi_{hh}^{(1)}\rangle + e^{iS_0^{hh}} |\psi_{hh}^{(1)}\rangle$ Process involving heavy/light hole: $|\psi_{hh}^{(1)}\rangle = (\alpha |\uparrow\rangle |\sigma_{(z)}^{+}\rangle + \beta |\downarrow\rangle |\sigma_{(z)}^{-}\rangle)/\sqrt{2}$ $|\psi_{\rm lh}^{(1)}\rangle = (\alpha |\uparrow\rangle |\sigma_{(z)}^{-}\rangle + \beta |\downarrow\rangle |\sigma_{(z)}^{+}\rangle)/\sqrt{2}$ Conditional phase shift for maximum entanglement: $S_0 = S_0^{hh} - S_0^{lh} = \pi / 2$ \Rightarrow Faraday rotation of photon polarization: $\left|\psi_{ep}^{(1)}(t_{A}+T)\right\rangle = \alpha \left|\uparrow\right\rangle \left|\leftrightarrow\right\rangle + \beta \left|\downarrow\right\rangle \left|\leftrightarrow\right\rangle$ Faraday rotation angle: $S_0 / 2 = \pi / 4$ Measurement of spin in x direction \Rightarrow photon projected onto $|\psi_p^{(1)}(t_B)\rangle = \alpha |\nabla\rangle \pm \beta |\rangle$

 \Rightarrow optospintronic link between photons and electron spins

Enclosing dot in a microcavity permits precise control of the interaction time Accumulated phase shift during single-photon interaction time T: source for $S_0 = S_0^{\text{hh}} - S_0^{\text{lh}} = (\Omega_{\text{hh}} - \Omega_{\text{lh}})T = \Omega_0 T$ detection quantum dot quantum dot of destination of origin M ~~~<mark>/</mark>~~~~~ photon j photon single-photon microcavity microcavity detector source for teleportation Z photon x detector

3.5 μ m³ volume cavity $\Rightarrow \Omega_0 = \frac{\pi}{2} \times 10^9 \text{ s}^{-1}$ and $T = 1 \text{ ns} \Rightarrow S_0 = \pi/2$ maximum entanglement *T* controlled by active Q-switching with 1 ps resolution \Rightarrow phase error 1 ps/1 ns = 0.1% $Q = 1.25 \times 10^8 \Rightarrow \tau = 43 \text{ ns} \Rightarrow$ escape probability $1 - e^{-T/\tau} = 2\%$ $Q = 10^7 \Rightarrow 1 - e^{-T/\tau} = 4\%$ $Q = 10^6 \Rightarrow 1 - e^{-T/\tau} = 37\%$

Enclosing dot in a microcavity permits precise control of the

0.04 μ m³ volume cavity \Rightarrow $T = 50 \text{ ps} \Rightarrow S_0 = \pi/2$ maximum entanglement

Naruse et al., Appl. Phys. Lett. 83, 4869 (2003):

T controlled by active Q-switching with 100 fs resolution \Rightarrow phase error 100 fs/ 50 ps = 10⁻³ Phase error due to bandwidth of photon: $\frac{\Gamma_{\text{photon}}T/4\hbar}{\hbar\omega_{\text{d}}T/4\hbar} = \frac{\Gamma_{\text{photon}}}{\hbar\omega_{\text{d}}} = 1.6 \times 10^{-4}$ In 2D photonic crystal: Lodahl et al., Nature 430, 654 (2004): $\tau = 20$ ns

 \Rightarrow escape probability $1 - e^{-T/\tau} = 2.6 \times 10^{-3}$ $\tau = 700 \text{ ns} \Rightarrow 1 - e^{-T/\tau} = 0.7 \times 10^{-4}$

Two-qubit teleportation

Two-qubit state in quantum dots of D': $|\psi_{e'}^{(2)}(t_A)\rangle = |\langle \rangle|\langle \rangle|$ Incoming photons linearly polarized: $|\psi_{pe'}^{(1)}(t_A)\rangle = |\langle \rangle|\langle \rangle|\langle \rangle|\langle \rangle|\langle \rangle|\rangle$ After interaction of photons with qubits: $|\psi_{pe'}^{(2)}(t_A + T)\rangle = e^{2iS_0^{hh}} |\psi_{hh}^{(2)}\rangle + e^{i(S_0^{hh} + S_0^{hh})} |\psi_{hh,hh}^{(2)}\rangle + e^{2iS_0^{hh}} |\psi_{hh}^{(2)}\rangle$ Both photon interactions involve heavy holes:

 $\left|\psi_{\rm hh}^{(2)}\right\rangle = \left(\left|\sigma_{(z)}^{+}\sigma_{(z)}^{+}\right\rangle\left|\uparrow\uparrow\uparrow\right\rangle + \left|\sigma_{(z)}^{+}\sigma_{(z)}^{-}\right\rangle\left|\uparrow\uparrow\downarrow\right\rangle + \left|\sigma_{(z)}^{-}\sigma_{(z)}^{+}\right\rangle\left|\downarrow\uparrow\uparrow\uparrow\right\rangle + \left|\sigma_{(z)}^{-}\sigma_{(z)}^{-}\right\rangle\left|\downarrow\downarrow\downarrow\downarrow\right\rangle\right) / 4$

One photon interaction involves a heavy hole, the other photon interaction a light hole: $|\psi_{hh,lh}^{(2)}\rangle = \left[\left(\left|\sigma_{(z)}^{+}\sigma_{(z)}^{-}\rangle+\left|\sigma_{(z)}^{-}\sigma_{(z)}^{+}\rangle\right)\left(\left|\uparrow\uparrow\uparrow\rangle\right\rangle+\left|\downarrow\downarrow\downarrow\rangle\right\rangle\right)+\left(\left|\sigma_{(z)}^{+}\sigma_{(z)}^{-}\sigma_{(z)}^{-}\rangle\right)\left(\left|\uparrow\downarrow\downarrow\rangle\right\rangle+\left|\downarrow\uparrow\uparrow\rangle\right\rangle\right)\right]/4$

Both photon interactions involve light holes:

$$\left|\psi_{\rm lh}^{(2)}\right\rangle = \left(\left|\sigma_{(z)}^{-}\sigma_{(z)}^{-}\right\rangle\left|\uparrow\uparrow\uparrow\right\rangle + \left|\sigma_{(z)}^{-}\sigma_{(z)}^{+}\right\rangle\left|\uparrow\uparrow\downarrow\right\rangle + a_{-+}\left|\sigma_{(z)}^{+}\sigma_{(z)}^{-}\right\rangle\left|\downarrow\uparrow\uparrow\right\rangle + a_{--}\left|\sigma_{(z)}^{+}\sigma_{(z)}^{+}\right\rangle\left|\downarrow\downarrow\downarrow\downarrow\right\rangle\right)/4$$

Conditional phase shift for maximum entanglement: $S_0 = S_0^{hh} - S_0^{lh} = \pi/2$

 \Rightarrow Faraday rotation of photon polarization:

 $\left|\psi_{\mathrm{pe}'}^{(2)}(t_{A}+T)\right\rangle = \left(\left|\longleftrightarrow\longleftrightarrow\right\rangle\left|\uparrow\uparrow\uparrow\right\rangle + \left|\longleftrightarrow\leftrightarrow\right\rangle\left|\uparrow\uparrow\downarrow\right\rangle + \left|\longleftrightarrow\leftrightarrow\right\rangle\left|\downarrow\uparrow\uparrow\uparrow\right\rangle + \left|\longleftrightarrow\leftrightarrow\right\rangle\left|\downarrow\downarrow\downarrow\downarrow\right\rangle\right)/2$

Formation of two entangled GHZ states

Two-qubit state in quantum dots of origin: $|\psi_e^{(2)}(t_c)\rangle = a_{\uparrow\uparrow}|\uparrow\uparrow\rangle + a_{\downarrow\downarrow}|\downarrow\downarrow\rangle + a_{\downarrow\downarrow}|\downarrow\downarrow\rangle$ Each photon interacts with each spin at D separately:

After interaction: $|\psi_{epe'}^{(2)}(t_c+T)\rangle = \frac{1}{2} (|\uparrow\uparrow\rangle|\psi_{ee'1}^{(2)}\rangle + |\uparrow\leftrightarrow\rangle|\psi_{ee'2}^{(2)}\rangle + |\leftrightarrow\uparrow\rangle|\psi_{ee'3}^{(2)}\rangle + |\leftrightarrow\leftrightarrow\rangle|\psi_{ee'4}^{(2)}\rangle)$

Measurement of linear polarization of the two photons:

 $a_{\uparrow\uparrow} = a_{\uparrow\downarrow} = a_{\downarrow\uparrow} = a_{\downarrow\downarrow} = \frac{1}{2}$ \Rightarrow production of four-qubit Bell states between D and D'

Collapse of the GHZ states

$$\begin{split} \left| \psi_{\mathrm{ee'4}}^{(2)}(t_{D}) \right\rangle &= a_{\downarrow\downarrow} \left| \downarrow\downarrow\downarrow\rangle \right| \uparrow\uparrow\uparrow\uparrow\rangle + a_{\downarrow\uparrow} \left| \downarrow\uparrow\downarrow\rangle \right| \uparrow\uparrow\downarrow\downarrow\rangle + a_{\uparrow\downarrow} \left| \uparrow\downarrow\downarrow\rangle \right| \downarrow\uparrow\uparrow\downarrow\rangle + a_{\uparrow\uparrow} \left| \uparrow\uparrow\uparrow\rangle \right\rangle + a_{\uparrow\uparrow} \left| \uparrow\uparrow\downarrow\rangle \right\rangle \\ &= \left| \leftarrow \leftarrow \right\rangle \left(a_{\downarrow\downarrow} \left| \uparrow\uparrow\uparrow\uparrow\rangle + a_{\downarrow\uparrow} \left| \uparrow\uparrow\downarrow\downarrow\rangle \right\rangle + a_{\uparrow\downarrow} \left| \downarrow\uparrow\uparrow\uparrow\rangle \right\rangle + a_{\uparrow\uparrow} \left| \downarrow\downarrow\downarrow\downarrow\rangle \right\rangle \right) + \left| \leftarrow \rightarrow \right\rangle \left(-a_{\downarrow\downarrow} \left| \uparrow\uparrow\uparrow\downarrow\rangle \right\rangle - a_{\uparrow\downarrow} \left| \downarrow\uparrow\uparrow\uparrow\rangle \right\rangle + a_{\uparrow\uparrow} \left| \downarrow\downarrow\downarrow\downarrow\rangle \right\rangle \right) \\ &+ \left| \rightarrow \leftarrow \right\rangle \left(-a_{\downarrow\downarrow} \left| \uparrow\uparrow\uparrow\uparrow\rangle - a_{\downarrow\uparrow} \left| \uparrow\uparrow\downarrow\downarrow\rangle \right\rangle + a_{\uparrow\uparrow} \left| \downarrow\downarrow\uparrow\downarrow\rangle \right\rangle + a_{\uparrow\uparrow} \left| \downarrow\downarrow\downarrow\downarrow\rangle \right\rangle \right) + \left| \rightarrow \rightarrow \right\rangle \left(a_{\downarrow\downarrow} \left| \uparrow\uparrow\uparrow\downarrow\rangle - a_{\downarrow\downarrow} \left| \uparrow\uparrow\uparrow\uparrow\rangle \right\rangle + a_{\uparrow\uparrow} \left| \downarrow\downarrow\downarrow\downarrow\rangle \right\rangle \right) \end{split}$$

Knowledge of detection outcome \Rightarrow teleportation from D to D' complete Generalization to *n* qubits is straightforward.

Complexity of *n*-qubit GHZ teleportation scales linearly with *n*.

Production of entangled photons

Independent nonresonant interaction of two photons with two quantum dots:

 $\left|\psi_{\rm ep}^{(2)}(t_A+T)\right\rangle = a_{\uparrow\uparrow}\left|\uparrow\uparrow\right\rangle\left|\longleftrightarrow\leftrightarrow\right\rangle + a_{\uparrow\downarrow}\left|\uparrow\downarrow\right\rangle\left|\longleftrightarrow\leftrightarrow\right\rangle + a_{\downarrow\uparrow}\left|\downarrow\uparrow\right\rangle\left|\longleftrightarrow\leftrightarrow\right\rangle + a_{\downarrow\downarrow}\left|\downarrow\downarrow\downarrow\right\rangle\left|\longleftrightarrow\leftrightarrow\right\rangle\right\rangle$

Change to S_x representation:

$$\left|\psi_{\rm ep}^{(2)}(t_{\rm A}+T)\right\rangle = \frac{1}{2} \left(\left|\leftarrow\leftarrow\right\rangle \left|\psi_{\rm p1}^{(2)}\right\rangle + \left|\leftarrow\rightarrow\right\rangle \left|\psi_{\rm p2}^{(2)}\right\rangle + \left|\rightarrow\leftarrow\right\rangle \left|\psi_{\rm p3}^{(2)}\right\rangle + \left|\rightarrow\rightarrow\right\rangle \left|\psi_{\rm p4}^{(2)}\right\rangle\right)$$

Measuring spins in x direction:

$$\left|\psi_{\mathrm{p1}}^{(2)}\right\rangle = a_{\uparrow\uparrow}\left|\checkmark\right\rangle + a_{\uparrow\downarrow}\left|\checkmark\right\rangle + a_{\downarrow\uparrow}\left|\swarrow\uparrow\right\rangle + a_{\downarrow\downarrow}\left|\swarrow\uparrow\right\rangle + a_{\downarrow\downarrow}\left|\swarrow\uparrow\right\rangle$$

or
$$\left|\psi_{p^{2}}^{(2)}\right\rangle = a_{\uparrow\uparrow}\left|\checkmark\right\rangle - a_{\uparrow\downarrow}\left|\checkmark\right\rangle + a_{\downarrow\uparrow}\left|\swarrow\uparrow\right\rangle - a_{\downarrow\downarrow}\left|\swarrow\uparrow\right\rangle$$

or
$$|\psi_{p3}^{(2)}\rangle = a_{\uparrow\uparrow}|\nabla_{\gamma}\rangle + a_{\uparrow\downarrow}|\nabla_{\nu}\rangle - a_{\downarrow\uparrow}|\swarrow\nabla_{\gamma}\rangle - a_{\downarrow\downarrow}|\swarrow\nabla_{\nu}\rangle$$

see also Leuenberger, Flatte, Awschalom, Europhys. Lett. **71**, 387 (2005).

or
$$|\psi_{p4}^{(2)}\rangle = a_{\uparrow\uparrow}|\nabla\nabla\rangle - a_{\uparrow\downarrow}|\nabla\psi\rangle - a_{\downarrow\uparrow}|\psi\rangle + a_{\downarrow\downarrow}|\psi\rangle\rangle$$

Knowledge of detection outcome \Rightarrow "direct teleportation" from spins to photons

$$a_{\uparrow\uparrow} = a_{\downarrow\downarrow} = 0, \ a_{\uparrow\downarrow} = a_{\downarrow\uparrow} = \frac{1}{\sqrt{2}} \implies \text{production of Bell states} \quad \left|\Psi_{p}^{(\pm)}\right\rangle = \left(\left|\overleftarrow{\neg}\downarrow\right\rangle \pm \left|\swarrow^{\uparrow}\right\rangle\right) / \sqrt{2}$$
$$a_{\uparrow\uparrow} = a_{\downarrow\downarrow} = \frac{1}{\sqrt{2}}, \ a_{\uparrow\downarrow} = a_{\downarrow\uparrow} = 0 \implies \text{production of Bell states} \quad \left|\Phi_{p}^{(\pm)}\right\rangle = \left(\left|\overleftarrow{\neg}\downarrow\right\rangle \pm \left|\swarrow^{\uparrow}\right\rangle\right) / \sqrt{2}$$

Conclusions

- The many-qubit state of one quantum dot system (origin) can be teleported to a second quantum dot system (destination) via nonresonant interaction of single photons with the quantum dots (producing qubit-photon-qubit entanglement, i.e. GHZ states).
- Single-photon measurements are sufficient to teleport not only a single-qubit state but also a many-qubit state (no Bell measurements are required). Reason: GHZ entanglement
- The state of the excess electron selects the circular polarization of the photons that gets entangled with the many-qubit state via conditional Faraday rotation.
- GHZ teleportation scheme opens up the possibility to build a Quantum Dynamic RAM (QDRAM) where the quantum error corrections are applied to the manyqubit state (short spin decoherence time of electrons).

Parametric down-conversion

Kwiat, Mattle, Weinfurter, Zeilinger, Sergienko, Shih, PRL 75, 4337 (1995)

o-polarization

Nonlinear crystal: β -Bariumborate [β -Ba(B₂O₄) or β -Ba₃(B₃O₆)₂]

Output state on overlapping cones: $|\psi\rangle_{12} = \frac{1}{\sqrt{2}} (|\leftrightarrow\rangle_1| \downarrow\rangle_2 + e^{i\varphi} |\downarrow\rangle_1 |\leftrightarrow\rangle_2) \Rightarrow |\Psi^{\pm}\rangle_{12}$ Ordinary and extraordinary polarization: vertical and horizontal φ is controlled by birefringent phase shifter or by rotating the crystal. $\lambda/2$ plate for one photon produces: $|\psi\rangle_{12} = \frac{1}{\sqrt{2}} (|\leftrightarrow\rangle_1| \leftrightarrow\rangle_2 + e^{i\varphi} |\downarrow\rangle_1 |\downarrow\rangle_2) \Rightarrow |\Phi^{\pm}\rangle_{12}$ Efficiency: 2 photons out of 10⁶ are entangled. Energy conservation: $\omega_0 = \omega_1 + \omega_2$ Momentum conservation: $\mathbf{k}_0 = \mathbf{k}_1 + \mathbf{k}_2$ Degenerate case: $\omega_1 = \omega_2 = \omega_0/2$

Quantum mechanics of PDC

Incident classical pump light field (UV): $V(\mathbf{r},t) = Ve^{i(\mathbf{k}_0 \cdot \mathbf{r} - \omega_0 t)}$

Interaction Hamiltonian in the interaction picture:

$$\hat{H}_{I}(t) = \int_{v} \frac{d^{3}x}{L^{3}} \sum_{\mathbf{k}_{1},s_{1}} \sum_{\mathbf{k}_{2},s_{2}} \chi_{ijl}(\omega_{0},\omega_{1},\omega_{2}) \left(\mathbf{\epsilon}_{\mathbf{k}_{1}s_{1}}\right)_{i} \left(\mathbf{\epsilon}_{\mathbf{k}_{2}s_{2}}\right)_{j} \mathbf{V}_{l} a_{\mathbf{k}_{1}s_{1}}^{\dagger} a_{\mathbf{k}_{2}s_{2}}^{\dagger} e^{i[(\mathbf{k}_{0}-\mathbf{k}_{1}-\mathbf{k}_{2})\cdot\mathbf{r}-(\omega_{0}-\omega_{1}-\omega_{2})t]} + \text{H.C.}$$

Initial state of the quantum field: $|\psi(t=0)\rangle_{12} = |\psi_{vac}\rangle$

$$\begin{split} \psi(t) \rangle_{12} &= \exp\left[-\frac{i}{\hbar} \int_{0}^{t} dt' \hat{H}_{I}(t')\right] |\psi_{\text{vac}} \rangle \\ &= |\psi_{\text{vac}} \rangle - \frac{i}{\hbar} \frac{1}{L^{3}} \sum_{\mathbf{k}_{1}, s_{1}} \sum_{\mathbf{k}_{2}, s_{2}} \chi_{ijl}(\omega_{0}, \omega_{1}, \omega_{2}) \left(\mathbf{\epsilon}_{\mathbf{k}_{1} s_{1}}\right)_{i} \left(\mathbf{\epsilon}_{\mathbf{k}_{2} s_{2}}\right)_{j} \mathbf{V}_{l} a_{\mathbf{k}_{1} s_{1}}^{\dagger} a_{\mathbf{k}_{2} s_{2}}^{\dagger} e^{i(\mathbf{k}_{0} - \mathbf{k}_{1} - \mathbf{k}_{2}) \cdot \mathbf{R}} \\ &\times \prod_{m=1}^{3} \left[\frac{\sin\left[\frac{1}{2} (\mathbf{k}_{0} - \mathbf{k}_{1} - \mathbf{k}_{2})_{m} l_{m}\right]}{\frac{1}{2} (\mathbf{k}_{0} - \mathbf{k}_{1} - \mathbf{k}_{2})_{m}} \right] e^{-\frac{i}{2} (\omega_{0} - \omega_{1} - \omega_{2})t} \frac{\sin\left[\frac{1}{2} (\omega_{0} - \omega_{1} - \omega_{2})t\right]}{\frac{1}{2} (\omega_{0} - \omega_{1} - \omega_{2})t} |\mathbf{k}_{1} s_{1}, \mathbf{k}_{2} s_{2}\rangle + O^{2}(\mathbf{V}) \end{split}$$

R is the midpoint of the nonlinear medium which has the shape of a rectangular parallelopiped of sides l_1, l_2, l_3 .

Type-II phase matching: center of \leftrightarrow and \updownarrow cones or not collinear.