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Applications of Spin 
measurement

Magnetic Resonance Imaging 
(MRI)

Spin – Effect Devices (Spin Transistors)

+
Quantum Computing

> 1010 spins > 103 spins

1 spin



Electron Spin Resonance

B0

Ћω0 = gμBB0
B1cos(ω1t)

spin rotates
with Rabi 
frequency ~ B1

If ω1 = ω0

Rabi , Zacharias, Millman, 
Kusch (1939) 

B0

V1cos(ω1t)

VEMF

Experiment



Single Spin Resonance: MRFM and 
Paramagnetic Traps in FETs

Rugar, Budakian, Mamin & Chui, 
Nature 430, 329 (2004)

Magnetic Resonance Force 
Microscopy (MRFM)

Electron Spin Resonance in a 
Field Effect Transistor (FET)

Xiao, Martin, Yablonovitch & Jiang, 
Nature 430, 435 (2004)



Traps in Field Effect Transistors 
and Random Telegraph Signals 

Vg>0

I > 0

Field Effect Transistor (FET)

+

empty trap (positive) 
higher resistance

+
-e filled trap (neutral) 

lower resistanceIf
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RTS – random switching
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Random Telegraph Signal 
(RTS) – experiment
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Defects at Si - SiO2
interface



A Setup for Electron Spin 
Resonance(ESR) 

At T = 0, B1 =0:
trap is filled if ε1/2 < μ
trap is empty if ε1/2 > μ

No RTS

At T = 0 and resonant B1(t):
trap can be filled if ε-1/2 < μ
e- is promoted ε1/2 -> ε-1/2
e- can escape if       ε1/2 > μ

The trap occupation number is modified by resonant B1(t)

0B

Electron Spin Resonance
-induced  RTS!

B1cos(ωrft)

Β1

trap



Quantum rate equations for 
ESR-RTS

h.c. – rotating wave approx

equations of motion
for trap density matrix

0 1σ σ σ↑↑ ↓↓+ + =

Average FET channel resistivity:

I. Martin, D. Mozyrsky & H.-W.Jiang, Phys. Rev. Lett. 90, 018301 (2003)



Resonance in average 
resistance
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Application of resonant rf B1(t) 
modifies the average channel 
resistivity by changing the RTS 
statistics

In presence of dephasing 
1/T2’ >> Γ:
peak width:

peak height:

0



ESR-RTS Experiment –average
current

(M. Xiao et al., Nature 430, 435, 2004)

g = 2.02



ESR-RTS Experiment – trap 
occupancy (HWJ)
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Surprise I: Signal changes sign 
for larger microwave power!

• Signal changes sign when Γ ~ ωRabi
• Improved signal-to-noise
• Tunneling rate is reduced on the resonance

Nature, 430, 435 (2004)



Traps for Quantum Computing 
A Readout Scheme
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Single Spin Measurement in 
Quantum Dots

Demonstrated Spin Measurement Efficiency ~ 65%

Elzerman et al., Nature 431, 430 (2004)



The Readout Scheme: 
Experimental Facts

The scheme works in quantum dots with 65% efficiency
REF: J.M. Elzerman etal., Nature 430, 431(2004).

So far in FET traps the scheme does not work – no RTS signal 
WHY? => spin is always in its ground state.

WHY? => fast spin relaxation => WHY?

Maybe because of the exchange interaction with electrons
in the conduction channel ?! 

Need to look at the microscopic structure of traps!
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Determination of Defect’s 
Position. Surprise II

Experimentalists can measure the location of the trap (x) 
with respect to the conduction channel. 

One finds x~1-3 Å.

Metal
Ins.

Semi.2DEG
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Defect position determination:
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Estimate for tunneling time yields ~ (ps – ns)  

Observed ~ (ms – s) ??? 



Polaronic Slowdown 

SiO2 is a polar crystal ⇒ strong coupling to optical phonons
Empty Trap Trap with an extra electron

+ e-
2DEGSiO2 2DEGSiO2



Tunnel rate in the presence of 
lattice deformations

H = 

E0

μ
γ

Calculation of Tunnel Rate for V = 0 (Golden Rule)

cond-mat/0312503

conduction 
electrons

defect
level

electron-phonon
interaction

optical
phonon

tunneling ( HT ) Coulomb
interaction



Estimate for Si Field Effect 
Transistor

Qualitative agreement with observed rates !
Strong electron-phonon interaction is responsible 

for long tunneling time in Si FET

1~,2,40 da== ∞εε

Assuming Fröhlich electron-phonon coupling

For SiO2 Å Ep ≈ 1.2 eV

For bulk optical phonons in SiO2: ω0
bulk ≈ 60 meV

exp (-Ep /ω0) ~ exp(-20) ~ 10-8

Mozyrsky, Martin, Shnirman cond-mat/0312503 
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Magnetic field dependence
at low temperatures. Surprise III

No agreement between simple model 
and experiment at low T!

Kondo effect?

For a paramagnetic spin 
(τempty/τfull) ≈ exp(gμBB / kBT)  

Xiao et al., Phys. Rev. Lett. 91, 078301 (2003)
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Kondo Effect

ρ

TFrom: Sarachik, etal, Phys. Rev. 135 (1964)

Resistivity of metals doped with magnetic impurities 

E0

E0+U Virtual
2-particle state

μ μ

Magnetic impurity in a metal

A localized impurity spin is screened by spins of conduction electrons 

At low energy scale (below TK) the magnetic impurity creates a strong
resonance at Fermi surface  => scattering => resistivity



Kondo?

TK ~ exp[-O(1) U/Γ ]

For Γ ~ 1 s-1 => TK 0

022 ωπν
pE

e
−

Δ=Γ

However, Γ is small only effectively – due to 
strong electron-lattice coupling! The “bare”

hybridization (“bare” Γ0) may be strong!

Large bare Γ0 relevant for Kondo if U > ω0 finite TK



Kondo!

Suppression of transitions for 
real (slow) process 

022 ωπνγ
pE

e
−

Δ=

No suppression of transitions
for virtual (fast) processes 

Kondo
transitions



Summary and Perspectives

• Single electron spin resonance in FET

• Tunneling slowdown (due to strong 
electron-lattice coupling)

• Kondo Effect in FET traps ?

• ESR signal inversion ?

What’s next? A single nuclear spin?...


