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- How to determine spin-orbit coupling when it is obscured 
by disorder?

- Tunneling in double-layer structures: 
clean layers 
diffusive layers 

- Key ingredient: correlated disorder

- I-V curves and their robustness with respect to e-e 
interactions

Outline



Motivation
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How to measure SO splitting       ? Δ

Large splitting SdH oscillations      1/τΔ

Small splitting  1/τΔ anomalous sensitivity
to SO coupling?



Motivation: search for anomalous sensitivity
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Interlayer tunneling

Large splitting will not be resolved! 1/τΔ

Weak splittings                                                will be resolved 1/τΔ

If the disorder in the two layers is correlated!



Introduction: tunneling in the absence of SO
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Zheng and MacDonald, ‘93



Tunneling in the presence of disorder

Uncorrelated disorder opens up 
finite tunneling
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Correlated disorder

Eigenstates corresponding to different energies are orthogonal

Correlations of disorder potential in the two layers 
suppress tunneling and narrows I-V curves 

Completely correlated disorder
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Zheng and MacDonald, ‘93



Role of spin-orbit coupling

SO coupling will break orthogonality, if it is different in two layers

SO couplings are opposite for a symmetric structure
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The model

Dopants are randomly distributed inside the  -layer of size δ a
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Correlators of disorder potentials:
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Completely uncorrelated disorder

Fully correlated disorder



Calculation of the tunneling current
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Interlayer vertex function
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I-V characteristics: non-interacting electrons
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I-V curves: diffusive limit 

Fully correlated disorder 0τ = ∞

1τ −Δ

Peak position shifts towards lower frequencies:
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Diffusive limit, but

Peak position is rather accurately at
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What is the meaning of                    ?2 1
04 τ τ −Δ +

Combined decoherence rate



Spin relaxation
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Impurity scattering
(spin-conserving!)
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After scattering the electron 
is no longer in an eigenstate:    

spin starts to precess

s

τΔ 21/ 2sτ τ= Δ
is the angle of precession 

between two consecutive collisions

(Dyakonov-Perel spin relaxation; DP ’71)



Combined decoherence rate

2 1
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Decoherence of spin wave function

0τ determines typical time 
for coherent propagation of 

in the two layers 

Decoherence of orbital
wave function

Factor ‘2’ : both layers are affected 



What about electron-electron interactions?

1τ −Δ 1τ −Δ

Will these peaks “survive” effects of electron-electron interactions?



Tunneling with e-e interactions: 
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Altshuler, Aronov, and Lee, ‘81

I-V characteristics Rudin, Aleiner, and Glaman, ‘97
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Tunneling with e-e interactions: 1eV τ −
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I-V characteristics
Rudin, Aleiner, and Glaman, ‘97
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Tunneling with e-e interactions: 1 0τ − →

Jungwirth and MacDonald, ‘96

I-V characteristics:
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1) Fast growth of   with 
2) Absence of a scale other than  

Chaplik ‘72, Hodges, Smith and Wilkins,’72
Zheng and Das Sarma, ‘96
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Tunneling with SO and e-e interactions:

Clean limit 1τ −Δ
0.1 FEΔ

Peak cannot be resolved!

Dirty limit                   ?1τ −Δ

Even first order diagrams
are complicated



Eigenstates formalism

To the first order, 
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Peak smearing

Comparing the first-order correction 
with the peak height
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Physical meaning:

Peak is “shifted” towards lower voltages:
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At these voltages width is small:
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Temperature broadening
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Estimates

1. Uncorrelated part of disorder must be weak: 1
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Optical conductivity of 2DEG

( , )qσ ω
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Spin-orbit coupling breaks Galilean invariance

Particle moving in electric field: 1E e U−= − ∇

In the reference frame moving with the electron velocity  
there is a magnetic field

pv
m

=

v EB
c
×

=

This magnetic field leads to the Zeeman energy which is 
momentum-dependent
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Electric current is spin-dependent                          
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Homogeneous optical 
conductivity can probe

many-body effects



Electron eigenstates

Spin degeneracy is lifted by
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Beyond RPA: two-particle channel
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Two-pair 
channel:
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Two pairs moving in opposite direction can have large energy 
while having negligible total momentum



Modification of Landau damping
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Direct transitions between 
subbands are possible:

2) ‘Combined’ or ‘chiral’ resonance

1) ‘Conventional’ Landau damping
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Two-particle channel with spin-orbit
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Direct processes

Exchange processes



Our method: many-body transitions in the presence of external field

2D diagrammatic calculations, Reizer & Vinokur: 2000 wrong
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Formalism: Golden Rule
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Our method applied
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Optical conductivity
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Each matrix element is not small in qM =

but they twice interfere pairwise almost 
canceling each other leading to 2M q∼

Optical conductivity vanishes in the homogeneous limit
as 
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Optical conductivity with Spin-Orbit coupling
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This contribution is the result of the interplay 
of spin-orbit coupling and interaction            



Discussion: I
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Discussion: II
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Exchange processes are equally important as the direct processes

Large-angle scattering:
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Numerical estimates

2 2 2 2
2 2

2 2'( ) (2 )
F

e m V T
v
λσ ω ω π
ω

⎡ ⎤+⎣ ⎦∼

Two-pair contribution is enhanced for 0T ω →

(2) 2 2 2

(1) 2 2 2    
F F

T
v p

σ λ κ
σ ω

∼

2

F

eV p∼Coulomb interaction: 

6 -11 10 cmFpκ ×∼ ∼

0.01∼

screening radius: 

min 1/ /Fv lω τ =∼

mean free path:

1l mμ∼

2

2   10
1/
T
τ
∼

(2)

(1) 0.1σ
σ

∼for  30T K∼

5.5 meVFE ∼



Conclusions

Spin-orbit coupling results in a single-pair absorption 
which is narrow in frequency

Combined effects of spin-orbit coupling and electron-electron interactions 
result in a broader contribution from many-particle excitations
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Spin-orbit coupling makes optical conductivity a probe for many-body effects


