Spin Control Based on the Rashba Spin-orbit Interaction

- Rashba spin-orbit interaction
- Competition between Zeeman and Rashba
- Spin interference experiments
- Stern-Gerlach Spin Filter

Tohoku University, CREST-JST NTT Basic Research Laboratories

Junsaku Nitta

F. Meijer, A. Morpurgo, T. Klapwijk (TU Delft) T. Koga, Y. Sekine, T. Bergsten (NTT) J. Ohe, T. Ohtsuki(Sophia Univ.)

Enhancement of spin-orbit interaction

SOI in vacuum

Rashba SOI in semiconductors

$$H_{R} = \frac{eP^{2}}{3} \left[\frac{1}{E_{g}^{2}} - \frac{1}{(E_{g} + \Delta_{SO})^{2}} \right] \sigma \cdot k \times \langle E \rangle_{v}$$

Energy gap

$$E_g, \Delta_{SO} \approx 1 \, eV$$

SOI

Narrow Gap semiconductor
Electric Field in QW

Rashba spin-orbit interaction in 2DEG

Potential Profile in InGaAs Quantum Well

Spin states in Time Reversal Symmetry Paths

Final spin directions are exactly opposite

Destructive interference due to SOI

Final spin states \rightarrow Exactly opposite $|\vec{S}c\rangle = R|\vec{S}i\rangle$ $|\vec{S}a\rangle = R^{-1}|\vec{S}i\rangle$ Clockwise $|\vec{S}a\rangle = R^{-1}|\vec{S}i\rangle$ $R(\alpha, \beta, \gamma) = \begin{bmatrix} \cos\frac{\alpha}{2}e^{i(\beta+\gamma)/2} & i\sin\frac{\alpha}{2}e^{-i(\beta-\gamma)/2} \\ i\sin\frac{\alpha}{2}e^{i(\beta-\gamma)/2} & \cos\frac{\alpha}{2}e^{-i(\beta+\gamma)/2} \end{bmatrix}$ Rotational operator

Many different paths with time reversal trajectories (Final Spin states are statistical)

$$\left\langle \vec{S}a \left| \vec{S}c \right\rangle = \left\langle \vec{S}i \left| R^2 \right| \vec{S}i \right\rangle = \cos^2 \frac{\alpha}{2} \cdot e^{i(\beta + \gamma)} - \sin^2 \frac{\alpha}{2} \approx 0 + \frac{\cos \alpha - 1}{2} \left(\approx -\frac{1}{2} \right) \right\}$$

Initial spin state $\left| \vec{S}i \right\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ for simplicity WAL effect

Length scales in quantum interference

Gate Controlled Spin-orbit Interaction(SOI)

Mg thin film with Au

G.Bergmann, Phys. Rev. Lett. 48, 1046 (1982)

Spin-orbit scattering is introduced by Au (Elliott spin relaxation)

Gate fitted InGaAs 2DEG Hall Bar

Gate voltage can control the Rashba SOI.

Spin dynamics in diffusive systems

Competition between Zeeman and Rashba

 $N_1 + N_2 = 4 \times 10^{18} \text{ cm}^{-3}$

N_2/N_1 :	0	1/3	1
Δ (meV):	≈2	≈1.5	≈0.5

Competition Zeeman and Rashba: alignment \leftrightarrow randomization $E_Z \leftrightarrow E_{SOI} \equiv \hbar/\tau_s$

Weak anti-localization and data analysis

Increase in spin relaxation time: $\tau_s(B_{||})$

Decrease in dephasing time: τ_{ϕ} (B₁₁)

Universal Spin-Induced Time Reversal Symmetry Breaking

•Saturation ($E_Z/E_{SOI} >> 1$)

⇒ No available theory

Universal behavior

Spin-induced Time Reversal Symmetry Breaking

Neutron Spin-interference Exp.

 4π -spin precession = 2π -phase shift

Spin precession: Local magnetic field

H. Rauch et al Phys. Lett. 54A (1975)

Operational Principle of Spin Interferometer

Spin interferometer by the Rashba SOI

Spin interference device

Appl. Phys. Lett. 75, 695 (1999)

Ring conductance depends on the precession angle

Spin precession by the Rashba SOI

Spin splitting as if a spin feels an effective magnetic field perpendicular to it momentum direction

$$\boldsymbol{E}(\boldsymbol{k}) = \frac{\hbar^2 \boldsymbol{k}^2}{2\boldsymbol{m}^*} \pm \boldsymbol{\alpha} \boldsymbol{k}$$

$$\frac{\hbar^2 k_{\uparrow}^2}{2m^*} + \alpha k_{\uparrow} = \frac{\hbar^2 k_{\downarrow}^2}{2m^*} - \alpha k_{\downarrow} \quad \therefore k_{\downarrow} - k_{\uparrow} = \frac{2\alpha m^*}{\hbar^2}$$

$$k_{\downarrow} \approx k_F + \frac{\alpha m^*}{\hbar^2}, \quad k_{\uparrow} \approx k_F - \frac{\alpha m^*}{\hbar^2}$$

k

Spin precession and precession angle

$$\psi(r) = \frac{1}{\sqrt{2}} e^{ik_F r} \begin{pmatrix} e^{-\frac{\alpha m^*}{\hbar^2}r} \\ e^{\frac{\alpha m^*}{\hbar^2}r} \\ e^{\frac{\alpha m^*}{\hbar^2}r} \end{pmatrix} \qquad \theta = \frac{2\alpha m^* L}{\hbar^2}$$

Aharonov-Bohm Oscillations Sample specific feature

Detail of the trajectory and k_F affect the interference

Gate voltage changes k_{F} , and its interference pattern !

AAS effect; Time-reversal symmetry interference

AAS oscillation does not depend on wave-vector k_F But it depends on spin precession angle

h/2e period oscillations

Trajectory: Same length between cw and anti-cw

Ensemble averaging of AB oscillations

VOLUME 56, NUMBER 4

PHYSICAL REVIEW LETTERS

27 JANUARY 1986

Direct Observation of Ensemble Averaging of the Aharonov-Bohm Effect in Normal-Metal Loops

C. P. Umbach, C. Van Haesendonck,^(a) R. B. Laibowitz, S. Washburn, and R. A. Webb IBM T.J. Watson Research Center, Yorktown Heights, New York 10598 (Received 6 November 1985)

(a)

Vg dependence of AAS oscillations

Array of 7700 loops

Array of loops is covered with gate to control SOI

Gate controlled SOI and spin precession

Summary

1.The origin of Rashba SOI and gate control 2.Competition between Zeeman and Rashba 3.Spin interference device

F. Meijer, A. Morpurgo, T. Klapwijk (TUD) T. Koga, Y. Sekine, T. Bergsten (NTT) J. Ohe, T. Ohtsuki (Sophia Univ.)