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atomic Landé g-factor
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Bloch state g-factors (zone center)
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bulk semiconductor g-factors (k.p)
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bulk semiconductor g-factors (k.p)



bulk semiconductor g-factors (k.p)
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Electron g-factor Engineering in III-V
Semiconductors for Quantum Communications
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Abstract— An entanglement-preserving photo-detector
converts photon polarization to electron spin. Up and down
spin must respond equally to oppositely polarized photons,
creating a requirement for degenerate spin energies, ge ≈0
for electrons. We present a plot of ge-factor versus lattice
constant, analogous to bandgap versus lattice constant, that
can be used for g-factor engineering of III-V alloys and quan-
tum wells

The major motive for the research on III-V semiconduc-
tors has been the development of opto-electronic devices for
optical communications. One of the key inventions for im-
proved semiconductor lasers was electronic band structure
engineering based on strained heterostructures [1]. Prac-
tical realization of quantum communications [2], [3] is ex-
pected to require entanglement-preserving photo-detectors
in which quantum information is transmitted by photon
polarization through an optical fiber, and then transferred
to electron spin in a semiconductor [4], [5]. To maintain the
entanglement, the photo-detector should absorb equally
into up and down electron spin states, and thus the electron
g-factor should be engineered for ge ≈0.Fortunately, the
familiar band structure engineering of effective mass can
equally well control g-factor as well. There are additional
requirements in Ref. 5 for moderately long spin coherence
times, and for a hole g-factor |gh|>>0, large enough to lift
the Kramers’ degeneracy of the valence band. Various III-
V alloys and quantum wells can be engineered to produce
the right g-factor combinations.

To commence the task of g-factor engineering, we have
graphed the experimental electron ge-factors in III-V semi-
conductors as a function of the lattice constant in Fig. 1(a).
This is analogous to the famous graph of bandgaps versus
lattice constant plotted in Fig. 1(b). In these figures, we
have inscribed vertical & horizontal dash-dotted lines to
illustrate design preferences. The horizontal axis in Fig.
1(a) shows a requirement for zero electron ge-factor, ge

≈0. The horizontal dash-dotted line in Fig. 1(b), is a
preference for a bandgap of 0.8 eV, or λ=1.55 µm, corre-
sponding to the optimum wavelength for fiber-optic com-
munications, but shorter wavelengths λ=1.3 µm are also
acceptable for quantum communication. To lattice match
the entanglement-preserving photo-detector to a conven-
tional InP substrate, a vertical dash-dotted line is shown

∗ Hideo Kosaka is on leave from NEC, Fundamental Research Lab-
oratories, 34, Miyukigaoka, Tsukuba 305-8501, Japan.
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Fig. 1

(a) A graph of ge-factors for conduction electrons in III-V semicon-

ductors as a function of lattice constant. Dots show experimental

ge-factors, solid curves show direct bandgap materials, and dashed

curves show indirect bandgap materials. The vertical dash-dotted

line indicates the lattice constant of bulk InP, that is normally used

for optical communication devices. Bulk ge-factors are plotted for

direct bandgap materials (InP [7,8], GaAs [9], GaInAs [10-12], InAs

[13], GaSb [14,15], GaInSb [16] and InSb [17]), and defect or impurity

related g-factors are plotted for indirect bandgap materials (GaP [18],

AlAs [19], and AlSb [20]). All data were taken at low temperature

1.4 - 4.2◦K, but Ref. 13 is taken at 30◦ K. (b) Energy bandgaps for

the materials shown in Fig. 1(a) at temperatures between 1.4 and

4.2◦ K.

Kosaka et al. Electronics Letters 37, 464



strained InAs/GaAs quantum dots
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strained InAs/GaAs quantum dots
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quantum dot k.p calculations

! calculate strain using finite elements

Hψ(r) = Eψ(r)! Schrödinger equation:

!          is an 8-component vector, and H is an 8x8 matrix with 

elements like

ψ(r)
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ε2
! put system on a grid:

! solve for eigenvalues and eigenvectors as a sparse matrix 

problem using the Lanczos algorithm



nanostructures in B-fields
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coupling to envelope (c.f. lattice gauge theory)

Pauli term for Bloch function spin



g-factors in spherical dots
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angular momentum quenching
g factors in solids
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angular momentum quenching
g factors in solids
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InAs/GaAs dots
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g-factors in InAs/GaAs dots

experiment: G. Medeiros-Ribeiro et al.  Appl. Phys. A (2003)
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in-plane g-factors
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whisker dots

•quantum well inside a nanowhisker 
N. Panev et al, APL, 83, 2238 (2003)

•resonant-magneto-tunneling spectroscopy
M. T. Bjork, et al, PRB 72,201307,(R) ( 2005)

•Hexagonal cross-section, <111> orientation,  wurtzite 
  

Amrit De



whisker orientation

 
bInP = 2.6 nm WInAs = 6 nm D = 40 nm



theory-vs-experiment
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whisker dots

• clean geometry and composition allows 
better comparison than for self-assembled 
dots

• much closer to experiment than Roth 
formula

• coupling to leads alters g

• wurtzite structure still a complication



electrical control of g-factors, g-TMR
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g-TMR

Hs=−g
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!

!B · !S
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! Bα gαβ Sβ

= !Ω · !S

→controllable Beff



g-TMR experiments: quantum wells

  
Kato et al., Science 299, 1201. (2003)
electric field to modify the electron wavefunction 
in a parabolic quantum well



g-TMR in self-assembled InAs/GaAs dots

E: growth direction
B: different directions

different dot heights, elongations



g-TMR in self-assembled InAs/GaAs dots
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g-TMR in self-assembled InAs/GaAs dots
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