Spintronics of Spin-Orbit Coupled Systems

Emmanuel I. Rashba

Department of Physics, Harvard University, Cambridge, MA 02138

Collaborations:

H.-A. Engel and B. I. Halperin, Harvard

Al. L. Efros, NRL

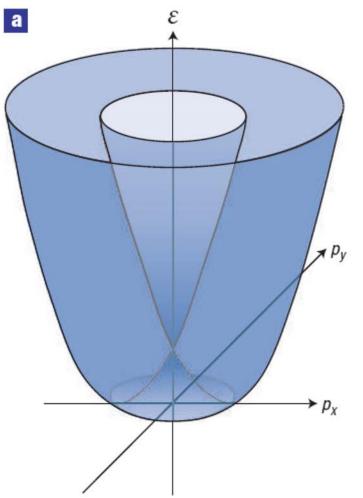
Spintronics Workshop

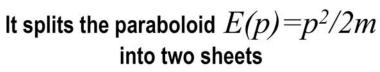
Kavli Institute for Theoretical Physics, Santa Barbara, CA

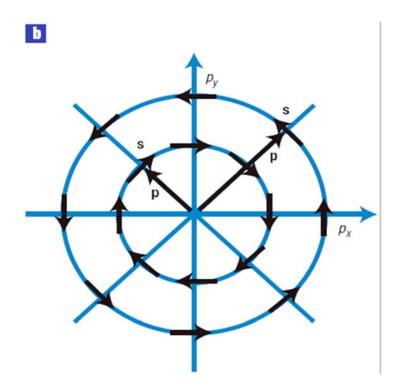
April 20, 2006

Supported by Harvard Center for Nanoscale Systems

How spin-orbit coupling changes the spectrum of noncentrosymmetric systems?







SO coupling establishes a strict connection between the direction of the momentum ${m p}$ and

the direction of the spin \boldsymbol{S}

Oscillator Strength for a Bloch Electron

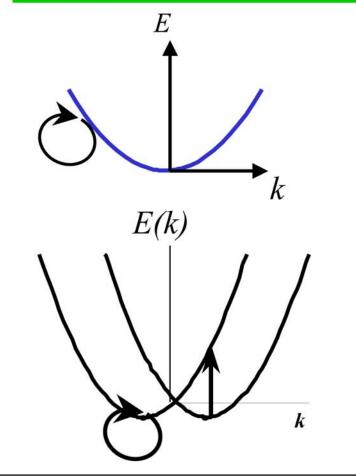
$$\begin{split} i[k,x] &= 1, \qquad \sum_{n} f_{n \leftarrow \ell} = 1 \qquad \text{TKR theorem} \\ f_{n \leftarrow \ell} &= i\{\langle \ell \mid k \mid n \rangle \langle n \mid x \mid \ell \rangle - \langle \ell \mid x \mid n \rangle \langle n \mid k \mid \ell \rangle\} \\ &\quad \langle n \mid x \mid \ell \rangle (E_{\ell} - E_{n}) = i \frac{\hbar^{2}}{m_{0}} \langle n \mid k \mid \ell \rangle \\ f_{n \leftarrow \ell} &= 2 \frac{\hbar^{2}}{m_{0}} \frac{|\langle \ell \mid k \mid n \rangle|^{2}}{E_{n} - E_{\ell}} \Leftarrow \quad \text{typical terms of } k.p \text{ - theory} \end{split}$$

When the $n = \ell$ term survives in the TKR theorem

$$\sum_{n \neq \ell} f_{n \leftarrow \ell} = 1 \quad \text{for local states}$$
$$\frac{m_0}{m_\ell} + \sum_{n \neq \ell} f_{n \leftarrow \ell} = 1, \quad f_{\ell \leftarrow \ell} = \frac{m_0}{m_\ell} \quad \text{for band states}$$

 $f_{\ell \leftarrow \ell}$ is the oscillator strength of the cyclotron and Drude absorption

Where Spin Coupling to Electric Field comes from?



Oscillator strength for a free electron in a parabolic band:

$$f = m_0 / m$$

 ${\mathcal M}$ - electron effective mass

 \mathcal{m}_0 - electron vacuum mass

Simplest spin-orbit coupling in non-centrosymmetric uniaxial crystals and in quantum wells

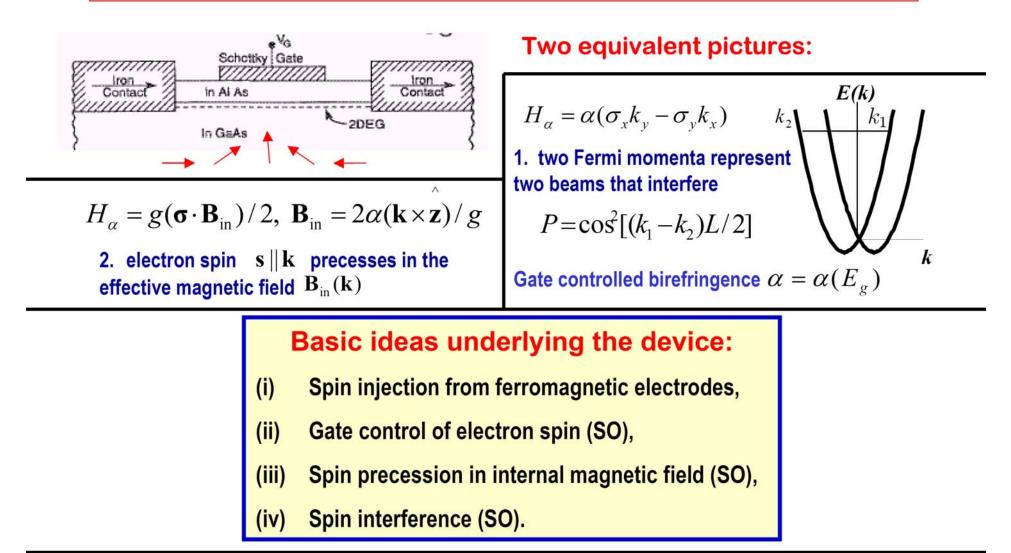
$$H_{\alpha} = \alpha(\mathbf{\sigma} \times \mathbf{k}) \cdot \hat{\mathbf{z}} = \alpha(\sigma_{x}k_{y} - \sigma_{y}k_{x})$$

It splits spectrum into two spin branches

Near the spectrum bottom the oscillator strength is divided equally between the intra- and interbranch transitions

 J_{inter} results in spin coupling to *ac* electric field, and in EDSR (electric dipole spin resonance) in a strong magnetic field

Spin transistor: Ideas encoded



Spintronics without magnetic elements:

generating nonequilibrium spin populations electrically via SO coupling

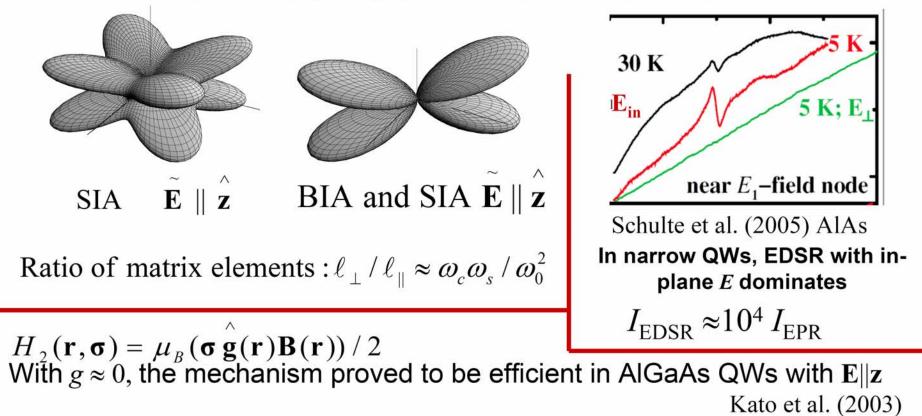
EDSR – Electric Dipole Spin Resonance

 $H_{so} = H_1(\mathbf{k}, \boldsymbol{\sigma}) + H_2(\mathbf{r}, \boldsymbol{\sigma}), \quad g\mu_B B \gg \alpha k_F$

 $H_1(\mathbf{k}, \sigma)$ mechanism well known in 3D:

Bell (1962), McCombe et al. (1967), Dobrowolska et al. (1984)

 $H_1(\mathbf{k}, \mathbf{\sigma}): H_\alpha = \alpha(\sigma_x k_y - \sigma_y k_x)$ SIA, $H_\beta = \beta(\sigma_x k_x - \sigma_y k_y)$ BIA



Charge Transport vs Spin Transport

Maxwellian equations include:

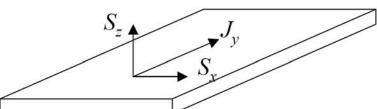
 E, D, ρ , and J for electric charge and current

B and *H*, or $M = (B - H)/4\pi$ for magnetization

Spin magnetization S is the only observable quantity.

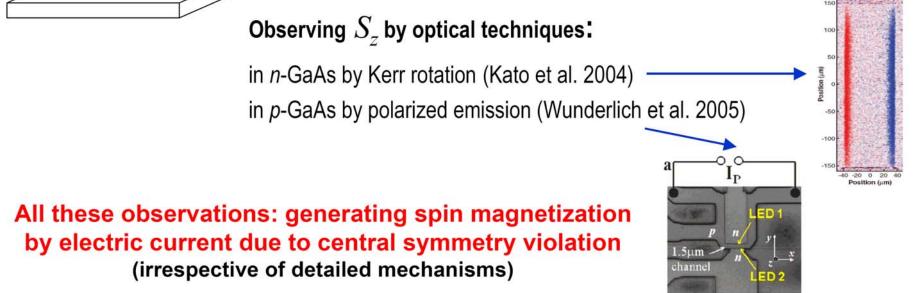
There is no magnetic charges and currents.

Spin nonconservation makes theory highly sophisticated, cf. AHE

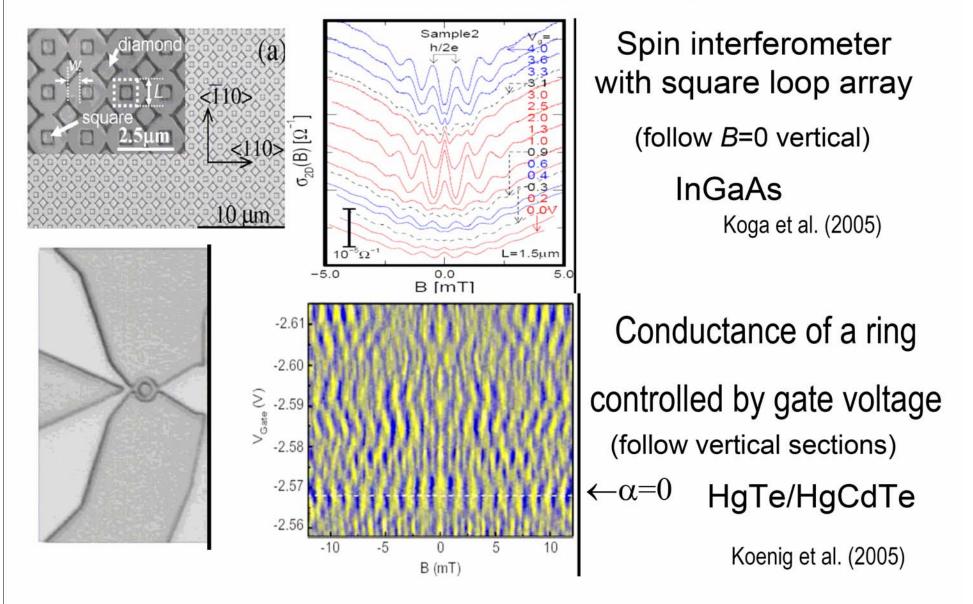


Observing S_x : Kato et al. (2004),

Silov et al. (2004), Ganichev et al. (2004)

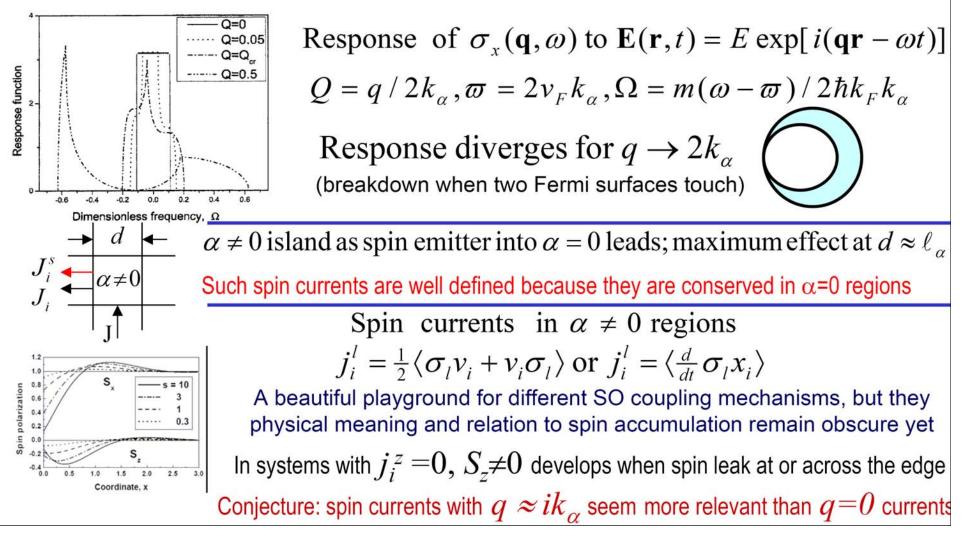


Spin interference in transport experiments



Formalism, spatial scales, and spin currents

Two analytical models: (I) ballistic transport in rings and (ii) diffusive transport Both result in characteristic length $\ell_{\alpha} = \hbar^2 / m\alpha \approx L_{sd}, k_{\alpha} = m\alpha / \hbar^2$



Universality Conjecture

Spin currents at q = 0 and $\omega = 0$ are of the scale $j_{\ell}^{i} \sim e/2\pi\hbar$ in 2D (Sinova et al $j_{\ell}^{i} \sim (e/2\pi\hbar)k_{F}$ in 3D (Murakami et al.) Exact quantization only when spin is conserved (2D channels in graphene)

Conjecture: at the spin-precession momentum $q \sim 2k_{\alpha}$ universality is achieved:

 $\begin{aligned} k_{so} &\sim m\alpha/\hbar^2 \sim \Delta_F/\hbar \\ j_{sH}(k_{so}) &\sim eE/2\pi\hbar, \ S(k_{so})/\hbar \sim k_{so}\tau eE/2\pi\hbar \end{aligned}$

For small device sizes and high operation frequencies, large α and $\Delta_{\rm F}$ are needed

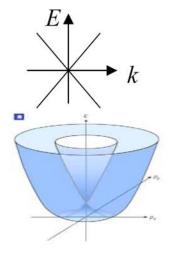
Nontraditional systems: from graphene to metal surfaces

Dispersion law and magnetic quantization in graphene:

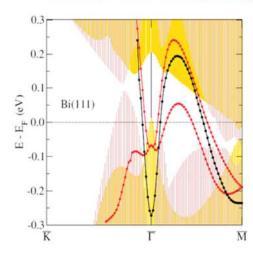
 $E(k) = \hbar v_F k, E_n = \operatorname{sign}\{n\} \sqrt{2\hbar v_F^2 B |n|/c}, -\infty < n < \infty$

Magnetic quantization with *k*-linear SO term:

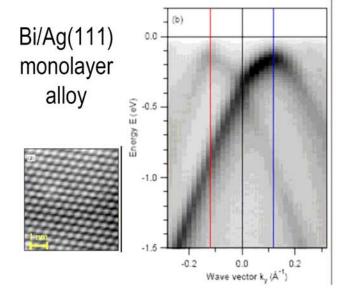
$$E_0 = \hbar \omega_c \delta, E_n^{\pm} = \hbar \omega_c (n \pm \sqrt{\delta^2 + 2(k_\alpha \ell_B)^2 n}), n \le 1$$
$$\omega_c = eB/\hbar c, \delta = (1 - gm/2m_0)/2, k_\alpha = m\alpha/\hbar^2, \ell_B^2 = c\hbar/eB$$



Giant SO coupling near surfaces of semimetals and metals



Surface states Bi (111) Black: without SO coupling Red: with SO coupling Koroteev et al. (2004)



Large SO results in ultra-short spin precession lengths

Conclusions:

- 1. Effect of SO on energy spectrum
- 2. Ideas underlying SO devices,
- 3. EDSR in 2D,
- 4. Electrical generation of spin populations,
- 5. Discovery of spin interference,
- 6. Theory: status, characteristic scales, challenges,
- 7. Nontraditional systems and surfaces

Spintronics of Spin-Orbit coupled Systems: Achievements and Challenges

Emmanuel I. Rashba

Department of Physics, Harvard University, Cambridge, MA 02138

Collaborations:

Hans-Andreas Engel and Bertrand Halperin, Harvard

Alexander Efros, NRL

Conference on Spintronics

Kavli Institute for Theoretical Physics

University of California, Santa Barbara

March 20 - 24, 2006

Supported by Harvard Center for Nanoscale Systems